Zum Hauptinhalt springen

Bile acid metabolites control T <subscript>H</subscript> 17 and T <subscript>reg</subscript> cell differentiation.

Hang, S ; Paik, D ; et al.
In: Nature, Jg. 576 (2019-12-01), Heft 7785, S. 143-148
academicJournal

Titel:
Bile acid metabolites control T <subscript>H</subscript> 17 and T <subscript>reg</subscript> cell differentiation.
Autor/in / Beteiligte Person: Hang, S ; Paik, D ; Yao, L ; Kim, E ; Trinath, J ; Lu, J ; Ha, S ; Nelson, BN ; Kelly, SP ; Wu, L ; Zheng, Y ; Longman, RS ; Rastinejad, F ; Devlin, AS ; Krout, MR ; Fischbach, MA ; Littman, DR ; Huh, JR
Zeitschrift: Nature, Jg. 576 (2019-12-01), Heft 7785, S. 143-148
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2019
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-019-1785-z
Schlagwort:
  • Animals
  • Forkhead Transcription Factors genetics
  • Forkhead Transcription Factors immunology
  • Lithocholic Acid chemistry
  • Mice
  • Mice, Inbred C57BL
  • Reactive Oxygen Species metabolism
  • T-Lymphocytes, Regulatory cytology
  • T-Lymphocytes, Regulatory immunology
  • T-Lymphocytes, Regulatory metabolism
  • Th17 Cells cytology
  • Th17 Cells immunology
  • Th17 Cells metabolism
  • Cell Differentiation drug effects
  • Lithocholic Acid pharmacology
  • T-Lymphocytes, Regulatory drug effects
  • Th17 Cells drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2019 Dec; Vol. 576 (7785), pp. 143-148. <i>Date of Electronic Publication: </i>2019 Nov 27.
  • MeSH Terms: Cell Differentiation / *drug effects ; Lithocholic Acid / *pharmacology ; T-Lymphocytes, Regulatory / *drug effects ; Th17 Cells / *drug effects ; Animals ; Forkhead Transcription Factors / genetics ; Forkhead Transcription Factors / immunology ; Lithocholic Acid / chemistry ; Mice ; Mice, Inbred C57BL ; Reactive Oxygen Species / metabolism ; T-Lymphocytes, Regulatory / cytology ; T-Lymphocytes, Regulatory / immunology ; T-Lymphocytes, Regulatory / metabolism ; Th17 Cells / cytology ; Th17 Cells / immunology ; Th17 Cells / metabolism
  • Comments: Erratum in: Nature. 2020 Mar;579(7798):E7. (PMID: 32094662)
  • References: Shapiro, H., Kolodziejczyk, A. A., Halstuch, D. & Elinav, E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 215, 383–396 (2018). (PMID: 293394455789421) ; Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006). (PMID: 16299351) ; Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015). (PMID: 261925994543561) ; Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007). (PMID: 17412828) ; Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340 (2009). (PMID: 196101332712893) ; Barrasa, J. I., Olmo, N., Lizarbe, M. A. & Turnay, J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol. In Vitro 27, 964–977 (2013). (PMID: 23274766) ; Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). (PMID: 25337874) ; Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013). (PMID: 22993202) ; Martínez-Moya, P. et al. Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int. Immunopharmacol. 15, 372–380 (2013). (PMID: 23246254) ; Schaap, F. G., Trauner, M. & Jansen, P. L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11, 55–67 (2014). (PMID: 23982684) ; Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 944 (2016). (PMID: 27760343) ; Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018). (PMID: 297988566407885) ; Cao, W. et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity 47, 1182–1196 (2017). (PMID: 292623515741099) ; Huh, J. R. et al. Digoxin and its derivatives suppress T H 17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011). (PMID: 214419093172133) ; Jin, L. et al. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORγ. Mol. Endocrinol. 24, 923–929 (2010). (PMID: 202031002870936) ; Santori, F. R. et al. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab. 21, 286–298 (2015). (PMID: 256511814317570) ; Soroosh, P. et al. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc. Natl Acad. Sci. USA 111, 12163–12168 (2014). (PMID: 250923234143045) ; Esplugues, E. et al. Control of T H 17 cells occurs in the small intestine. Nature 475, 514–518 (2011). (PMID: 217654303148838) ; Huh, J. R. & Littman, D. R. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur. J. Immunol. 42, 2232–2237 (2012). (PMID: 229493213609417) ; Roda, A., Minutello, A., Angellotti, M. A. & Fini, A. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J. Lipid Res. 31, 1433–1443 (1990). (PMID: 2280184) ; Pellicciari, R. et al. Discovery of 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100), a novel bile acid as potent and highly selective FXR agonist for enterohepatic disorders. J. Med. Chem. 59, 9201–9214 (2016). (PMID: 27652492) ; Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014). (PMID: 251267834151558) ; Feng, Y. et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 528, 132–136 (2015). (PMID: 266055294862833) ; Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010). (PMID: 200721262884187) ; Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). (PMID: 242267733869884) ; Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal T H 2 inflammation. Nature 482, 395–399 (2012). (PMID: 223185203485072) ; Schlenner, S. M., Weigmann, B., Ruan, Q., Chen, Y. & von Boehmer, H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med. 209, 1529–1535 (2012). (PMID: 229083223428940) ; Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002). (PMID: 12016314) ; Yu, J. et al. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J. Biol. Chem. 277, 31441–31447 (2002). (PMID: 12052824) ; Nanduri, R. et al. The active form of vitamin D transcriptionally represses Smad7 Signaling and activates extracellular signal-regulated kinase (ERK) to inhibit the differentiation of a inflammatory T helper cell subset and suppress experimental autoimmune encephalomyelitis. J. Biol. Chem. 290, 12222–12236 (2015). (PMID: 258094844424354) ; Jeffery, L. E. et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183, 5458–5467 (2009). (PMID: 19843932) ; Gorman, S. et al. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4 + CD25 + cells in the draining lymph nodes. J. Immunol. 179, 6273–6283 (2007). (PMID: 17947703) ; Kang, S. W. et al. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J. Immunol. 188, 5276–5282 (2012). (PMID: 22529297) ; Etchegaray, J. P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016). (PMID: 272592024893201) ; Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012). (PMID: 223427413319512) ; Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015). (PMID: 262612664548052) ; Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015). (PMID: 25437876) ; Xu, T. et al. Metabolic control of T H 17 and induced T reg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017). (PMID: 287837316701955) ; Zhang, D. et al. d-mannose induces regulatory T cells and suppresses immunopathology. Nat. Med. 23, 1036–1045 (2017). (PMID: 28759052) ; Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). (PMID: 234159113582741) ; Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 (2017). (PMID: 284161945462872) ; Robb, E. L. et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic. Biol. Med. 89, 883–894 (2015). (PMID: 26454075) ; Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). (PMID: 198360682796826) ; Gagliani, N. et al. T H 17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015). (PMID: 259240644498984) ; Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998). (PMID: 9780343) ; Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009). (PMID: 19864602) ; Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011). (PMID: 221523033627293) ; Kakiyama, G. et al. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: validation by GC-MS and LC-MS. J. Lipid Res. 55, 978–990 (2014). (PMID: 246271293995475) ; Sakai, K., Makino, T., Kawai, Y. & Mutai, M. Intestinal microflora and bile acids. Effect of bile acids on the distribution of microflora and bile acid in the digestive tract of the rat. Microbiol. Immunol. 24, 187–196 (1980). (PMID: 6447830) ; Robben, J., Caenepeel, P., Van Eldere, J. & Eyssen, H. Effects of intestinal microbial bile salt sulfatase activity on bile salt kinetics in gnotobiotic rats. Gastroenterology 94, 494–502 (1988). (PMID: 3335321) ; Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife 7, e37182 (2018). (PMID: 300148526078496) ; van der Windt, G. J., Chang, C. H. & Pearce, E. L. Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr. Protoc. Immunol. 113, 3.16B.1–13.16B.14 (2016). ; Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RB hi CD4 + T cells. Immunity 1, 553–562 (1994). (PMID: 7600284) ; Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018). (PMID: 297730785956843) ; Bolyen, E. et al. An introduction to applied bioinformatics: a free, open, and interactive text. J Open Source Educ 1, 27 (2018). (PMID: 306878456343836) ; Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 272140474927377)
  • Grant Information: R01 DK110559 United States DK NIDDK NIH HHS; United States HHMI Howard Hughes Medical Institute; P30 DK034854 United States DK NIDDK NIH HHS; R01 AI107027 United States AI NIAID NIH HHS; 210664/Z/18/Z United Kingdom WT_ Wellcome Trust; R01 DK114252 United States DK NIDDK NIH HHS; R01 DK103358 United States DK NIDDK NIH HHS; R01 AI080885 United States AI NIAID NIH HHS
  • Substance Nomenclature: 0 (Forkhead Transcription Factors) ; 0 (Foxp3 protein, mouse) ; 0 (Reactive Oxygen Species) ; 5QU0I8393U (Lithocholic Acid)
  • Entry Date(s): Date Created: 20191129 Date Completed: 20200326 Latest Revision: 20230315
  • Update Code: 20231215
  • PubMed Central ID: PMC6949019

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -