Zum Hauptinhalt springen

Multicontext multitask learning networks for mass detection in mammogram.

Shen, R ; Zhou, K ; et al.
In: Medical physics, Jg. 47 (2020-04-01), Heft 4, S. 1566-1578
Online academicJournal

Titel:
Multicontext multitask learning networks for mass detection in mammogram.
Autor/in / Beteiligte Person: Shen, R ; Zhou, K ; Yan, K ; Tian, K ; Zhang, J
Link:
Zeitschrift: Medical physics, Jg. 47 (2020-04-01), Heft 4, S. 1566-1578
Veröffentlichung: 2017- : Hoboken, NJ : John Wiley and Sons, Inc. ; <i>Original Publication</i>: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics., 2020
Medientyp: academicJournal
ISSN: 2473-4209 (electronic)
DOI: 10.1002/mp.13945
Schlagwort:
  • Breast Neoplasms diagnostic imaging
  • Image Processing, Computer-Assisted methods
  • Machine Learning
  • Mammography
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Phys] 2020 Apr; Vol. 47 (4), pp. 1566-1578. <i>Date of Electronic Publication: </i>2020 Mar 05.
  • MeSH Terms: Machine Learning* ; Mammography* ; Breast Neoplasms / *diagnostic imaging ; Image Processing, Computer-Assisted / *methods
  • References: World Health Organization. Breast cancer; 2017. ; Stewart B, Wild CP. World cancer report 2014. Health; 2017. ; Oliver A, Freixenet J, Marti J, et al. A review of automatic mass detection and segmentation in mammographic images. Med Image Anal. 2010;14:87-110. ; Bionetworks S. Digital Mammography DREAM. Challenge. 2017. ; Shen L. End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design, arXiv preprint arXiv:1708.09427, 2017. ; Dhungel N, Carneiro G, Bradley AP. Automated mass detection in mammograms using cascaded deep learning and random forests. In Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on, pages 1-8, IEEE; 2015. ; Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303-312. ; te Brake GM, Karssemeijer N, Hendriks JH. An automatic method to discriminate malignant masses from normal tissue in digital mammograms1. Phys Med Biol. 2000;45:2843. ; Sahiner B, Chan H-P, Petrick N, Helvie MA, Hadjiiski LM. Improvement of mammographic mass characterization using spiculation measures and morphological features. Med Phys. 2001;28:1455-1465. ; Hong B-W, Brady M. A topographic representation for mammogram segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 730-737, Springer; 2003. ; Hong B-W, Sohn B-S. Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans Inf Technol Biomed. 2010;14:129-139. ; Pereira DC, Ramos RP, Do Nascimento MZ. Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Comput Methods Programs Biomed. 2014;114:88-101. ; Dhungel N, Carneiro G, Bradley AP. Deep learning and structured prediction for the segmentation of mass in mammograms. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 605-612, Springer; 2015. ; Zhang Y, Yang Q. A survey on multi-task learning, arXiv preprint arXiv:1707.08114, 2017. ; Ruder S. An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098, 2017. ; Cheng H, Shi X, Min R, Hu L, Cai X, Du H. Approaches for automated detection and classification of masses in mammograms. Pattern Recogn. 2006;39:646-668. ; Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35:1153-1159. ; Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG. Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed. 2016;127:248-257. ; Dhungel N, Carneiro G, Bradley AP. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal. 2017;37:114-128. ; Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8. ; Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91-99; 2015. ; Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725-1732; 2014. ; Zhao R, Ouyang W, Li H, Wang X. Saliency detection by multi-context deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1265-1274; 2015. ; Ou X, Ling H, Yu H, Li P, Zou F, Liu S. Adult image and video recognition by a deep multicontext network and fine-to-coarse strategy. ACM Trans Intel Syst Tec. 2017;8:1-25. ; Salehi SSM, Erdogmus D, Gholipour A. Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging. IEEE Trans Med Imaging. 2017;36:2319-2330. ; Caruana R. Multitask learning. Mach Learn. 1997;28:41-75. ; He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2980-2988, IEEE; 2017. ; Yang Y, Hospedales TM. Trace norm regularised deep multi-task learning, arXiv preprint arXiv:1606.04038, 2016. ; Chaichulee S, Villarroel M, Jorge J, et al. Multi-task Convolutional Neural Network for Patient Detection and Skin Segmentation in Continuous Non-contact Vital Sign Monitoring. In Automatic Face and Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pages 266-272, IEEE; 2017. ; Yang X, Zeng Z, Yeo SY, Tan C, Tey HL, Su Y. A novel multi-task deep learning model for skin lesion segmentation and classification, arXiv preprint arXiv:1703.01025, 2017. ; Liu C, Zeng X, Wang K, Guo Q, Xu M. Multi-task Learning for Macromolecule Classification, Segmentation and Coarse Structural Recovery in Cryo-Tomography, arXiv preprint arXiv:1805.06332, 2018. ; Hammouche K, Diaf M, Siarry P. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst. 2008;109:163-175. ; Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431-3440; 2015. ; Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Pages 234-241, Springer; 2015. ; Ertosun MG, Rubin DL. Probabilistic visual search for masses within mammography images using deep learning. In Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on, pages 1310-315, IEEE, 2015. ; Novikov AA, Lenis D, Major D, Hladuvka J, Wimmer M, Buhler K. Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging. 2018;37:1865-1876. ; Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. DRINet for medical image segmentation. IEEE Trans Med Imaging. 2018;37:2453-2462. ; Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014. ; He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778;2016. ; Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818-2826; 2016. ; Liu X, Zeng Z. A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing. 2015;152:388-402. ; Kingma DP, Ba J. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014. ; Lee RS, Gimenez F, Hoogi A, Rubin D. Curated breast imaging subset of DDSM. The Cancer Imaging Archive. 2016. ; Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer P. The digital database for screening mammography, Digital mammography, pages 431-434; 2000. ; Moreira C, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. Inbreast: toward a full-field digital mammographic database. Acad Radiol. 2012;19:236-248. ; Chollet F, Keras, https://github.com/keras-team/keras, 2015. ; Abadi M, Barham P, Chen J, et al. TensorFlow: A System for Large-Scale Machine Learning, In 12th USENIX Symposium on Operating Systems Design and Implementation vol. 16. pages 265-283, OSDI; 2016. ; Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861-874. ; Kozegar E, Soryani M, Minaei B, Domingues I. Assessment of a novel mass detection algorithm in mammograms. J Cancer Res Ther. 2013;9:592. ; Eggert C, Brehm S, Winschel A, Zecha D, Lienhart R. A closer look: Small object detection in faster r-cnn, in IEEE international conference on multimedia and expo (ICME), pages 421-426, 2017. ; Wang H, Feng J, Zhang Z, et al. Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recogn. 2018;80:42-52. ; Li Y, Chen H, Yang Y, Cheng L, Cao L. A bilateral analysis scheme for false positive reduction in mammogram mass detection. Comput Biol Med. 2015;57:84-95. ; Li Y, Chen H, Wei X, Peng Y, Cheng L. Mass classification in mammograms based on two-concentric masks and discriminating texton. Pattern Recogn. 2016;60:648-656. ; Tsochatzidis L, Zagoris K, Arikidis N, Karahaliou A, Costaridou L, Pratikakis I. Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recogn. 2017;71:106-117. ; DeLong E, DeLong D, Clarke-Pearson D. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-845. ; Shen R, Yan K, Tian K, Jiang C, Zhou K. Breast mass detection from the digitized x-ray mammograms based on the combination of deep active learning and self-paced learning. Future Gener Comp Syst. 2019;101:668-679.
  • Contributed Indexing: Keywords: deep learning; mass detection; multi-context learning; multi-task learning
  • Entry Date(s): Date Created: 20191205 Date Completed: 20210125 Latest Revision: 20210125
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -