Zum Hauptinhalt springen

Determining the effect of calcium on cell death rate and perforation formation during leaf development in the novel model system, the lace plant (Aponogeton madagascariensis).

Fraser, MS ; Dauphinee, AN ; et al.
In: Journal of microscopy, Jg. 278 (2020-06-01), Heft 3, S. 132-144
Online academicJournal

Titel:
Determining the effect of calcium on cell death rate and perforation formation during leaf development in the novel model system, the lace plant (Aponogeton madagascariensis).
Autor/in / Beteiligte Person: Fraser, MS ; Dauphinee, AN ; Gunawardena, AHLAN
Link:
Zeitschrift: Journal of microscopy, Jg. 278 (2020-06-01), Heft 3, S. 132-144
Veröffentlichung: Oxford, Published for the Royal Microscopical Society by Blackwell Scientific Publications., 2020
Medientyp: academicJournal
ISSN: 1365-2818 (electronic)
DOI: 10.1111/jmi.12859
Schlagwort:
  • Alismatales cytology
  • Alismatales drug effects
  • Calcimycin pharmacology
  • Cell Tracking
  • Image Processing, Computer-Assisted
  • Lanthanum pharmacology
  • Optical Imaging
  • Plant Leaves drug effects
  • Ruthenium Red pharmacology
  • Alismatales growth & development
  • Apoptosis drug effects
  • Calcium metabolism
  • Calcium Ionophores pharmacology
  • Cell Death drug effects
  • Plant Leaves growth & development
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Microsc] 2020 Jun; Vol. 278 (3), pp. 132-144. <i>Date of Electronic Publication: </i>2020 Jan 09.
  • MeSH Terms: Alismatales / *growth & development ; Apoptosis / *drug effects ; Calcium / *metabolism ; Calcium Ionophores / *pharmacology ; Cell Death / *drug effects ; Plant Leaves / *growth & development ; Alismatales / cytology ; Alismatales / drug effects ; Calcimycin / pharmacology ; Cell Tracking ; Image Processing, Computer-Assisted ; Lanthanum / pharmacology ; Optical Imaging ; Plant Leaves / drug effects ; Ruthenium Red / pharmacology
  • References: Amelot, N., de Borne, F.D., San Clemente, H., Mazars, C., Grima-Pettenati, J. & Brière, C. (2012) Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium. 51(2), 117-130. https://doi.org/10.1016/j.ceca.2011.11.010. ; Balk, J., Leaver, C.J. & McCabe, P.F. (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett. 463(1-2), 151-154. https://doi.org/10.1016/S0014-5793(99)01611-7. ; Blevins, D.G., Barnett, N.M. & Bottino, P.J. (1977) The effects of calcium and the ionophore A23I87 on modulation, nitrogen fixation and growth of soybeans. Physiol. Plant. 41(4), 235-238. https://doi.org/10.1111/j.1399-3054.1977.tb04876.x. ; Daneva, A., Gao, Z., Van Durme, M. & Nowack, M.K. (2016) Functions and regulation of programmed cell death in plant development. Annu. Rev. Cell Dev. Biol. 32(1), 441-468. https://doi.org/10.1146/annurev-cellbio-111315-124915. ; Dauphinee, A.N., Fletcher, J.I., Denbigh, G.L., Lacroix, C.R. & Gunawardena, A.H.L.A.N. (2017) Remodelling of lace plant leaves: antioxidants and ROS are key regulators of programmed cell death. Planta 246(1), 133-147. https://doi.org/10.1007/s00425-017-2683-y. ; Dauphinee, A.N. & Gunawardena, A.N. (2015) An overview of programmed cell death research: from canonical to emerging model species. Plant Programmed Cell Death (ed. by A.N. Gunawardena & P.F. McCabe), pp. 1-31. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-21033-9_1. ; Dauphinee, A.N., Wright, H., Rantong, G. & Gunawardena, A. (2012) The involvement of ethylene in programmed cell death and climacteric-like behaviour during the remodelling of lace plant (Aponogeton madagascariensis) leaves. Botany 90(12), 1237-1244. https://doi.org/10.1139/b2012-093. ; de Pinto, M.C., Locato, V. & de Gara, L. (2012) Redox regulation in plant programmed cell death. Plant Cell Environ. 35(2), 234-244. https://doi.org/10.1111/j.1365-3040.2011.02387.x. ; Elliott, A. & Gunawardena, A.H.L.A.N. (2010) Calcium inhibition halts developmental programmed cell death in the lace plant, Aponogeton madagascariensis? Botany 88(2), 206-210. https://doi.org/10.1139/B09-084. ; Fengling, M., Qingxiang, G., Lijia, Z. & Wei, Z. (2012) Influx of extracellular calcium participates in rituximab-enhanced ionizing radiation-induced apoptosis in Raji cells. Toxicol. Lett. 209(3), 221-226. https://doi.org/10.1016/j.toxlet.2011.12.018. ; Fleckenstein, A. (1983) History of calcium antagonists. Circ. Res. 52(2), I-13-I-16. http://novanet-primo.hosted.exlibrisgroup.com/primo_library/libweb/action/display.do?frbrVersion=2&tabs=detailsTab&ct=display&fn=search&doc=TN_ovid00003012-198302001-00002&indx=1&recIds=TN_ovid00003012-198302001-00002&recIdxs=0&elementId=0&renderMode=popp. Accessed March 25, 2018. ; Gao, X., Cox, Jr. K. & He, P. (2014) Functions of calcium-dependent protein kinases in plant innate immunity. Plants 3(1), 160-176. https://doi.org/10.3390/plants3010160. ; Greenberg, J.T. (1996) Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. USA 93, 12094-12097. http://www.pnas.org/content/93/22/12094.full.pdf. Accessed September 11, 2017. ; Gunawardena, A.H.L.A.N. (2008) Programmed cell death and tissue remodelling in plants: Fig. 1. J. Exp. Bot. 59(3), 445-451. https://doi.org/10.1093/jxb/erm189. ; Gunawardena, A.H.L.A.N., Greenwood, J.S. & Dengler, N.G. (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16(1), 60-73. https://doi.org/10.1105/tpc.016188. ; Gunawardena, A.H.L.A.N., Navachandrabala, C., Kane, M. & Dengler, N. (2006) Lace plant: a novel system for studying developmental programme cell death. Floric. Ornam Plant Biotechnol. 1, 157-162. ; Jambrina, E., Alonso, R., Alcalde, M. et al. (2003) Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J. Biol. Chem. 278(16), 14134-14145. https://doi.org/10.1074/jbc.M211388200. ; Jones, A.M. (2001) Programmed cell death in development and defense. Plant Physiol. 125(1), 94-97. https://doi.org/10.1104/pp.125.1.94. ; Kacprzyk, J., Brogan, N.P., Daly, C.T. et al. (2017) The retraction of the protoplast during PCD is an active, and interruptible, calcium-flux driven process. Plant Sci. 260, 50-59. https://doi.org/10.1016/j.plantsci.2017.04.001. ; Kacprzyk, J., Dauphinee, A.N., Gallois, P., Gunawardena, A.H. & McCabe, P.F. (2016) Methods to study plant programmed cell death. Methods Mol. Biol. 1419, 145-160. https://doi.org/10.1007/978-1-4939-3581-9_12. ; Kadono, T., Tran, D., Errakhi, R. et al. (2010) Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. Newbigin E, ed. PLoS One 5(10), e13373. https://doi.org/10.1371/journal.pone.0013373. ; Krebs, J. (1998) The role of calcium in apoptosis. Biometals 11(4), 375-382. https://doi.org/10.1023/A:1009226316146. ; Kuhn, S., Bussemer, J., Chigri, F. & Vothknecht, U.C. (2009) Calcium depletion and calmodulin inhibition affect the import of nuclear-encoded proteins into plant mitochondria. Plant J. 58(4), 694-705. https://doi.org/10.1111/j.1365-313X.2009.03810.x. ; Lachaud, C., Prigent, E., Thuleau, P. et al. (2013) 14-3-3-Regulated Ca 2+ -dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ. 20(2), 209-217. https://doi.org/10.1038/cdd.2012.114. ; Lecourieux, D., Ranjeva, R. & Pugin, A. (2006) Calcium in plant defence-signalling pathways: Tansley review. New Phytol. 171(2), 249-269. https://doi.org/10.1111/j.1469-8137.2006.01777.x. ; Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R. & Lamb, C. (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6(4), 427-437. https://doi.org/10.1016/S0960-9822(02)00510-9. ; Liu, D., Wang, X., Chen, X., Lin, Y., Chen, Z. & Xu, H. (2012) Effects of Lanthanum on the change of calcium level in the root cells of rice. Commun. Soil Sci. Plant Anal. 43(15), 1994-2003. https://doi.org/10.1080/00103624.2012.693231. ; Liu, D., Zheng, S. & Wang, X. (2016) Lanthanum regulates the reactive oxygen species in the roots of rice seedlings. Sci. Rep. 6(1), 31860. https://doi.org/10.1038/srep31860. ; Lord, C.E.N. & Gunawardena, A.H.L.A.N. (2011) Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 233(2), 407-421. https://doi.org/10.1007/s00425-010-1304-9. ; Lord, C.E.N. & Gunawardena, A.H.L.A.N. (2012) Programmed cell death in C. elegans, mammals and plants. Eur. J. Cell Biol. 91(8), 603-613. https://doi.org/10.1016/j.ejcb.2012.02.002. ; Lord, C.E.N., Wertman, J.N., Lane, S. & Gunawardena, A.H.L.A.N. (2011) Do mitochondria play a role in remodelling lace plant leaves during programmed cell death? BMC Plant Biol. 11(1), 102. https://doi.org/10.1186/1471-2229-11-102. ; Minibayeva, F., Polygalova, O., Alyabyev, A. & Gordon, L. (2000) Structural and functional changes in root cells induced by calcium ionophore A23187. Plant Soil. 219(1), 169-175. https://doi.org/10.1023/A:1004780314091. ; Nicotera, P. & Orrenius, S. (1998) The role of calcium in apoptosis. Cell Calcium. 12(2/3), 173-180. https://doi.org/10.1023/A:1009226316146. ; O'Brien, I.E.W. & Ferguson, I.B. (1997) Calcium signalling in programmed cell death in plants. Plant Nutrition for Sustainable Food Production and Environment (ed. by T. Ando, K. Fujita, T. Mae, H. Matsumoto, S. Mori & J. Sekiya), pp. 99-130. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-0047-9_18. ; Orrenius, S., Zhivotovsky, B. & Nicotera, P. (2003) Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4(7), 552-565. https://doi.org/10.1038/nrm1150. ; Pottosin, I.I., Dobrovinskaya, O.R. & Muñiz, J. (1999) Cooperative block of the plant endomembrane ion channel by ruthenium red. Biophys. J. 77(4), 1973-1979. https://doi.org/10.1016/S0006-3495(99)77038-4. ; Ramakrishna, A., Giridhar, P. & Ravishankar, G.A. (2011) Calcium and calcium ionophore A23187 induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr. Vitr. Cell Dev. Biol. Plant. 47(6), 667-673. https://doi.org/10.1007/s11627-011-9372-5. ; Rantong, G. & Gunawardena, A.H.L.A.N. (2017) Vacuolar processing enzymes, AmVPE1 and AmVPE2, as potential executors of ethylene regulated programmed cell death in the lace plant (Aponogeton madagascariensis). Botany 96(4), 235-247. https://doi.org/10.1139/cjb-2017-0184. ; Ray, S.K., Fidan, M., Nowak, M.W., Wilford, G.G., Hogan, E.L. & Banik, N.L. (2000) Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res. 852, 326-334. https://doi.org/10.1016/S0006-8993(99)02148-4. ; Romero-Puertas, M.C., Rodríguez-Serrano, M., Corpas, F.J., Gómez, M., Del Río, L.A. & Sandalio, L.M. (2004) Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant Cell Environ. 27(9), 1122-1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x. ; Serrano, I., Romero-Puertas, M.C., Sandalio, L.M. & Olmedilla, A. (2015) The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 66(10), 2869-2876. https://doi.org/10.1093/jxb/erv083. ; Stael, S., Wurzinger, B., Mair, A., Mehlmer, N. & Vothknecht, U.C., Teige, M. (2012) Plant organellar calcium signalling: an emerging field. J. Exp. Bot. 63(4), 1525-1542. https://doi.org/10.1093/jxb/err394. ; Trobacher, CP. (2009) Ethylene and programmed cell death in plants. Botany 87(8), 757-769. https://doi.org/10.1139/B09-041. ; Tuteja, N. & Mahajan, S. (2007) Calcium signaling network in plants: an overview. Plant Signal Behav. 2(2), 79-85. https://doi.org/10.4161/psb.2.2.4176. ; Wang, Y., Loake, G.J. & Chu, C. (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front. Plant Sci. 4, 314. https://doi.org/10.3389/fpls.2013.00314. ; Wertman, J., Lord, C.E., Dauphinee, A. & HLAN Gunawardena A. (2012) The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves. BMC Plant Biol. 12, 115. http://www.biomedcentral.com/1471-2229/12/115. Accessed November 6, 2017. ; White, P.J. & Broadley, M.R. (2003) Calcium in plants. Ann. Bot. 92(4), 487-511. https://doi.org/10.1093/aob/mcg164. ; Yu, X.H., Perdue, T.D., Heimer, Y.M. & Jones, A.M. (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ. 9(2), 189-198. https://doi.org/10.1038/sj.cdd.4400940. ; Yu, Y., Li, X., Sun, J. et al. (2016) Heat shock responses in Populus euphratica cell cultures: important role of crosstalk among hydrogen peroxide, calcium and potassium. Plant Cell Tissue Organ Cult. 125(2), 215-230. https://doi.org/10.1007/s11240-016-0940-6.
  • Contributed Indexing: Keywords: Aponogeton madagascariensis; calcium signalling; lace plant; leaf development; live cell imaging; perforation formation
  • Substance Nomenclature: 0 (Calcium Ionophores) ; 04M8624OXV (lanthanum chloride) ; 11103-72-3 (Ruthenium Red) ; 37H9VM9WZL (Calcimycin) ; 6I3K30563S (Lanthanum) ; SY7Q814VUP (Calcium)
  • Entry Date(s): Date Created: 20191227 Date Completed: 20210903 Latest Revision: 20210903
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -