Zum Hauptinhalt springen

Magnetic Resonance Imaging Assessment After Therapy in Prostate Cancer.

Koopman, AGMM ; Jenniskens, SFM ; et al.
In: Topics in magnetic resonance imaging : TMRI, Jg. 29 (2020-02-01), Heft 1, S. 47-58
Online academicJournal

Titel:
Magnetic Resonance Imaging Assessment After Therapy in Prostate Cancer.
Autor/in / Beteiligte Person: Koopman, AGMM ; Jenniskens, SFM ; Fütterer, JJ
Link:
Zeitschrift: Topics in magnetic resonance imaging : TMRI, Jg. 29 (2020-02-01), Heft 1, S. 47-58
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: [Frederick, MD : Aspen Publishers, c1988-, 2020
Medientyp: academicJournal
ISSN: 1536-1004 (electronic)
DOI: 10.1097/RMR.0000000000000231
Schlagwort:
  • Aged
  • Humans
  • Male
  • Prostate diagnostic imaging
  • Prostate radiation effects
  • Prostate surgery
  • Prostatic Neoplasms diagnostic imaging
  • Treatment Outcome
  • Magnetic Resonance Imaging methods
  • Prostatic Neoplasms radiotherapy
  • Prostatic Neoplasms surgery
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Top Magn Reson Imaging] 2020 Feb; Vol. 29 (1), pp. 47-58.
  • MeSH Terms: Magnetic Resonance Imaging / *methods ; Prostatic Neoplasms / *radiotherapy ; Prostatic Neoplasms / *surgery ; Aged ; Humans ; Male ; Prostate / diagnostic imaging ; Prostate / radiation effects ; Prostate / surgery ; Prostatic Neoplasms / diagnostic imaging ; Treatment Outcome
  • References: Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10:63–89. ; Gillessen S, Omlin A, Attard G, et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015; 26:1589–1604. ; Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 2008; 358:1250–1261. ; Resnick MJ, Koyama T, Fan KH, et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med 2013; 368:436–445. ; Ahmed HU, Pendse D, Illing R, et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat Clin Pract Oncol 2007; 4:632–642. ; Onik G, Narayan P, Vaughan D, et al. Focal “nerve-sparing” cryosurgery for treatment of primary prostate cancer: a new approach to preserving potency. Urology 2002; 60:109–114. ; Meiers I, Waters DJ, Bostwick DG. Preoperative prediction of multifocal prostate cancer and application of focal therapy: review 2007. Urology 2007; 70: (6 suppl): 3–8. ; Stamey TA, Freiha FS, McNeal JE, et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 1993; 71: (3 suppl): 933–938. ; Muller BG, Van den Bos W, Brausi M, et al. Follow-up modalities in focal therapy for prostate cancer: results from a Delphi consensus project. World J Urol 2015; 33:1503–1509. ; Yakar D, Debats OA, Bomers JG, et al. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging 2012; 35:20–31. ; Villers A, Puech P, Mouton D, et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 2006; 176 (6 pt 1):2432–2437. ; Froemming AT, Verma S, Eberhardt SC, et al. ACR appropriateness criteria post-treatment follow-up prostate cancer. J AM Coll Radiol 2018; 15:S132–S149. ; Allen SD, Thompson A, Sohaib SA. The normal post-surgical anatomy of the male pelvis following radical prostatectomy as assessed by magnetic resonance imaging. Eur Radiol 2008; 18:1281–1291. ; Rischke HC, Schäfer AO, Nestle U, et al. Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without endorectal coil. Radiat Oncol 2012; 7:185. ; Panebianco V, Barchetti F, Sciarra A, et al. Prostate cancer recurrence after radical prostatectomy: the role of 3-T diffusion imaging in multi-parametric magnetic resonance imaging. Eur Radiol 2013; 23:1745–1752. ; Roberts SG, Blute ML, Bergstralh EJ, et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc 2001; 76:576–581. ; Hricak H, Carrington BM. MRI of the Pelvis: A Text Atlas. London:Martin Dunitz; 1991. ; Sella T, Schwartz LH, Hricak H. Retained seminal vesicles after radical prostatectomy: frequency, MRI characteristics, and clinical relevance. AJR Am J Roentgenol 2006; 186:539–546. ; Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol 2010; 20:1254–1266. ; Vargas HA, Wassberg C, Akin O, et al. MR imaging of treated prostate cancer. Radiology 2012; 262:26–42. ; Panebianco V, Barchetti F, Barentsz J, et al. Pitfalls in interpreting mp-MRI of the prostate: a pictorial review with pathologic correlation. Insights Imaging 2015; 6:611–630. ; Sfoungaristos S, Kontogiannis S, Perimenis P. Early continence recovery after preservation of maximal urethral length until the level of verumontanum during radical prostatectomy: primary oncological and functional outcomes after 1 year of follow-up. Biomed Res Int 2013; 2013:426208. ; Muezzinoglu B, Erdamar S, Chakraborty S, et al. Verumontanum mucosal gland hyperplasia is associated with atypical adenomatous hyperplasia of the prostate. Arch Pathol Lab Med 2001; 125:358–360. ; Mertan FV, Greer MD, Borofsky S, et al. Multi-parametric magnetic resonance imaging of recurrent prostate cancer. Top Magn Reson Imaging 2016; 25:139–147. ; Chen YJ, Chu WC, Pu YS, et al. Washout gradient in dynamic contrast enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 2012; 36:912–919. ; Verma S, Turkbey B, Muradyan N, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol 2012; 198:1277–1288. ; De Visschere PJ, De Meerleer GO, Futterer JJ, et al. Role of MRI in follow-up after focal therapy for prostate carcinoma. AJR Am J Roentgenol 2010; 194:1427–1433. ; Lopes Dias J, Lucas R, Magalhaes Pina J, et al. Post-treated prostate cancer: normal findings and signs of local relapse on multiparametric magnetic resonance imaging. Abdom Imaging 2015; 40:2814–2838. ; Grant K, Lindenberg ML, Shebel H, et al. Functional and molecular imaging of localized and recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2013; 40: (suppl 1): S48–S59. ; Panebianco V, Sciarra A, Lisi D, et al. Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol 2012; 81:700–708. ; Hernandez D, Salas D, Giménez D, et al. Pelvic MRI findings in relapsed prostate cancer after radical prostatectomy. Radiat Oncol 2015; 10:262. ; Cirillo S, Petracchini M, Scotti L, et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol 2009; 19:761–769. ; Roy C, Foudi F, Charton J, et al. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy. AJR Am J Roentgenol 2013; 200:W361–W368. ; Wassberg C, Akin O, Vargas HA, et al. The incremental value of contrast-enhanced MRI in the detection of biopsy-proven local recurrence of prostate cancer after radical prostatectomy: effect of reader experience. AJR Am J Roentgenol 2012; 199:360–366. ; Cha D, Kim CK, Park SY, et al. Evaluation of suspected soft tissue lesion in the prostate bed after radical prostatectomy using 3T multiparametric magnetic resonance imaging. Magn Reson Imaging 2015; 33:407–412. ; Kitajima K, Hartman RP, Froemming AT, et al. Detection of local recurrence of prostate cancer after radical prostatectomy using endorectal coil MRI at 3 T: addition of DWI and dynamic contrast enhancement to T2-weighted MRI. AJR Am J Roentgenol 2015; 205:807–816. ; Silverman JM, Krebs TL. MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. AJR Am J Roentgenol 1997; 168:379–385. ; Casciani E, Polettini E, Carmenini E, et al. Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am J Roentgenol 2008; 190:1187–1192. ; Sciarra A, Panebianco V, Salciccia S, et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol 2008; 54:589–600. ; McCammack KC, Raman SS, Margolis DJ. Imaging of local recurrence in prostate cancer. Future Oncol 2016; 12:2401–2415. ; Panebianco V, Barchetti F, Musio D, et al. Advanced imaging for the early diagnosis of local recurrence prostate cancer after radical prostatectomy. Biomed Res Int 2014; 2014:827265. ; Sella T, Schwartz LH, Swindle PW, et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 2004; 231:379–385. ; Wu LM, Xu JR, Gu HY, et al. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radiol) 2013; 25:252–264. ; Barchetti F, Panebianco V. Multiparametric MRI for recurrent prostate cancer post radical prostatectomy and postradiation therapy. Biomed Res Int 2014; 2014:316272. ; Linder BJ, Kawashima A, Woodrum DA, et al. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging. Can J Urol 2014; 21:7283–7289. ; Mohler JL, Kantoff PW, Armstrong AJ, et al. Prostate cancer, version 2.2014. J Natl Compr Canc Netw 2014; 12:686–718. ; Fraass BA. The development of conformal radiation therapy. Med Phys 1995; 22 (11 pt 2):1911–1921. ; Coakley FV, Teh HS, Qayyum A, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 2004; 233:441–448. ; Coakley FV, Hricak H, Wefer AE, et al. Brachytherapy for prostate cancer: endorectal MR imaging of local treatment-related changes. Radiology 2001; 219:817–822. ; Sugimura K, Carrington BM, Quivey JM, et al. Postirradiation changes in the pelvis: assessment with MR imaging. Radiology 1990; 175:805–813. ; Chan TW, Kressel HY. Prostate and seminal vesicles after irradiation: MR appearance. J Magn Reson Imaging 1991; 1:503–511. ; Sala E, Eberhardt SC, Akin O, et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology 2006; 238:176–183. ; Song I, Kim CK, Park BK, et al. Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am J Roentgenol 2010; 194:W477–W482. ; Marigliano C, Donati OF, Vargas HA, et al. MRI findings of radiation-induced changes in the urethra and periurethral tissues after treatment for prostate cancer. Eur J Radiol 2013; 82:e775–e781. ; Cox JD, Gallagher MJ, Hammond EH, et al. Consensus statements on radiation therapy of prostate cancer: guidelines for prostate re-biopsy after radiation and for radiation therapy with rising prostate-specific antigen levels after radical prostatectomy. American Society for Therapeutic Radiology and Oncology Consensus Panel. J Clin Oncol 1999; 17:1155. ; Sheinbein C, Teh BS, Mai WY, et al. Prostate-specific antigen bounce after intensity-modulated radiotherapy for prostate cancer. Urology 2010; 76:728–733. ; Zumsteg ZS, Spratt DE, Romesser PB, et al. The natural history and predictors of outcome following biochemical relapse in the dose escalation era for prostate cancer patients undergoing definitive external beam radiotherapy. Eur Urol 2015; 67:1009–1016. ; Patel P, Oto A. Magnetic resonance imaging of the prostate: including pre- and postinterventions. Semin Intervent Radiol 2016; 33:186–195. ; Arrayeh E, Westphalen AC, Kurhanewicz J, et al. Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys 2012; 82:e787–e793. ; Cellini N, Morganti AG, Mattiucci GC, et al. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002; 53:595–599. ; Pucar D, Hricak H, Shukla-Dave A, et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007; 69:62–69. ; Jalloh M, Leapman MS, Cowan JE, et al. Patterns of local failure following radiation therapy for prostate cancer. J Urol 2015; 194:977–982. ; Westphalen AC, Kurhanewicz J, Cunha RM, et al. T2-Weighted endorectal magnetic resonance imaging of prostate cancer after external beam radiation therapy. Int Braz J Urol 2009; 35:171–180. discussion 181–172. ; Rouviere O, Valette O, Grivolat S, et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor-correlation with biopsy findings. Urology 2004; 63:922–927. ; Haider MA, Chung P, Sweet J, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 2008; 70:425–430. ; Franiel T, Ludemann L, Taupitz M, et al. MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: the feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual- contrast gradient echo sequence. Radiother Oncol 2009; 93:241–245. ; Arumainayagam N, Kumaar S, Ahmed HU, et al. Accuracy of multiparametric magnetic resonance imaging in detecting recurrent prostate cancer after radiotherapy. BJU Int 2010; 106:991–997. ; Kara T, Akata D, Akyol F, et al. The value of dynamic contrast-enhanced MRI in the detection of recurrent prostate cancer after external beam radiotherapy: correlation with transrectal ultrasound and pathological findings. Diag Interv Radiol 2011; 17:38–43. ; Kim CK, Park BK, Park W, et al. Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdominal Imaging 2010; 35:246–252. ; Akin O, Gultekin DH, Vargas HA, et al. Incremental value of diffusion weighted and dynamic contrast enhanced MRI in the detection of locally recurrent prostate can- cer after radiation treatment: preliminary results. Eur Radiol 2011; 21:1970–1978. ; Donati OF, Jung SI, Vargas HA, et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology 2013; 268:440–450. ; Kim CK, Park BK, Lee HM. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging 2009; 29:391–397. ; Hara T, Inoue Y, Satoh T, et al. Diffusion-weighted imaging of local recurrent prostate cancer after radiation therapy: comparison with 22-core three- dimensional prostate mapping biopsy. Magn Reson Imaging 2012; 30:1091–1098. ; Morgan VA, Riches SF, Giles S, et al. Diffusion-weighted MRI for locally recurrent prostate cancer after external beam radiotherapy. AJR Am J Roentgenol 2012; 198:596–602. ; Tsien C, Cao Y, Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 2014; 24:218–226. ; Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007; 25:4104–4109. ; Coakley FV, Kurhanewicz J, Lu Y, et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology 2002; 2231:91–97. ; Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 1999; 2132:473. ; Pickett B, Kurhanewicz J, Coakley F, et al. Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2004; 604:1047–1055. ; Menard C, Smith IC, Somorjai RL, et al. Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int J Radiat Oncol Biol Phys 2001; 502:317–323. ; Pucar D, Shukla-Dave A, Hricak H, et al. Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology 2005; 236:545–553. ; Westphalen AC, Coakley FV, Roach M 3rd, et al. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 2010; 256:485–492. ; Mueller-Lisse UG, Swanson MG, Vigneron DB, et al. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 2001; 46:49–57. ; Mishra MV, Shirazi R, Barrett WL. Incidence and clinical course of hemorrhagic radiation proctitis after iodine-125 prostate brachytherapy. Clin Genitourin Cancer 2007; 5:397–400. ; Hotker AM, Mazaheri Y, Zheng J, et al. Prostate cancer: assessing the effects of androgen- deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI. Eur Radiol 2015; 25:2665–2672. ; Kim AY, Kim CK, Park SY, et al. Diffusion-weighted imaging to evaluate for changes from androgen deprivation therapy in prostate cancer. AJR Am J Roentgenol 2014; 203:W645–W650. ; Ocak I, Bernardo M, Metzger G, et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 2007; 189:849. ; Tamada T, Sone T, Jo Y, et al. Locally recurrent prostate cancer after high-dose-rate brachytherapy: the value of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging in localizing tumors. AJR Am J Roentgenol 2011; 197:408–414. ; Muller BG, Fütterer JJ, Gupta RT, et al. The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 2014; 113:218–227. ; Siddiqui K, Chopra R, Vedula S, et al. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 2010; 76:1506–1511. ; Sankineni S, Wood BJ, Rais-Bahrami S, et al. Image-guided focal therapy for prostate cancer. Diagn Interv Radiol 2014; 20:492–497. ; Pauly KB, Diederich CJ, Rieke V, et al. Magnetic resonance-guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging 2006; 17:195–207. ; Kim CK, Park BK, Lee HM, et al. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am J Roentgenol 2008; 190:1180–1186. ; Rouvière OG, Girouin N, Glas L, et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol 2010; 20:48–55. ; Mearini L, D’Urso L, Collura D, et al. High-intensity focused ultrasound for the treatment of prostate cancer: a prospective trial with long-term follow-up. Scand J Urol 2015; 49:267–274. ; Hoquetis L, Malavaud B, Game X, et al. MRI evaluation following partial HIFU therapy for localized prostate cancer: a single-center study. Prog Urol 2016; 26:517–523. ; Dickinson L, Ahmed HU, Hindley RG, et al. Prostate-specific antigen vs. magnetic resonance imaging parameters for assessing oncological outcomes after high intensity-focused ultrasound focal therapy for localized prostate cancer. Urol Oncol 2017; 35:30.e9-30.e15. ; Punwani S, Emberton M, Walkden M, et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radiol 2012; 85:720–728. ; Del Vescovo R, Pisanti F, Russo V, et al. Dynamic contrast-enhanced MR evaluation of prostate cancer before and after endorectal high-intensity focused ultrasound. Radiol Med 2013; 118:851–862. ; Martino P, Scattoni V, Galosi AB, et al. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol 2011; 29:595–605. ; Niaf E, Lartizien C, Bratan F, et al. Prostate focal peripheral zone lesions: characterization at multiparametric MR imaging—influence of a computer-aided diagnosis system. Radiology 2014; 271:761–769. ; Kirkham AP, Emberton M, Hoh IM, et al. MR imaging of prostate after treatment with high-intensity focused ultrasound. Radiology 2008; 246:833–844. ; Rouvière O, Lyonnet D, Raudrant A, et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol 2001; 40:265–274. ; Notley M, Yu J, Fulcher AS, et al. Diagnosis of recurrent prostate cancer and its mimics at multiparametric prostate MRI. Br J Radiol 2015; 88:20150362. ; Rouviere O, Gelet A, Crouzet S, et al. Prostate focused ultrasound focal therapy–imaging for the future. Nat Rev Clin Oncol 2012; 9:721–727. ; Parivar F, Hricak H, Shinohara K. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 1996; 48:594–599. ; Muller B, Sankineni S, Elbuluk O, et al. Multi-Parametric MRI Findings of Post-Treatment Changes in the Prostate Gland. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago IL. http://archive.rsna.org/2014/14019036.html Accessed December 24, 2019. ; Onik G, Vaughan D, Lotenfoe R, et al. The “male lumpectomy”: focal therapy for prostate cancer using cryoablation results in 48 patients with at least 2-year follow-up. Urol Oncol 2008; 26:500–505. ; Scheenen TW, Rosenkrantz AB, Haider MA, et al. Multiparametric magnetic resonance imaging in prostate cancer management: current status and future perspectives. Invest Radiol 2015; 50:594–600. ; Levy DA, Ross AE, ElShafei A, et al. Definition of biochemical success following primary whole gland prostate cryoablation. J Urol 2014; 192:1380–1384. ; De Castro Abreu AL, Bahn D, Leslie S, et al. Salvage focal and salvage total cryoablation for locally recurrent prostate cancer after primary radiation therapy. BJU Int 2013; 112:298–307. ; Long JP, Bahn D, Lee F, et al. Five-year retrospective, multi- institutional pooled analysis of cancer-related outcomes after cryosurgical ablation of the prostate. Urology 2001; 57:518–523. ; Overduin CG, Bomers JG, Jenniskens SF, et al. T1-weighted MR image contrast around a cryoablation iceball: a phantom study and initial comparison with in vivo findings. Med Phys 2014; 41:112301. ; Butts K, Daniel BL, Chen L, et al. Diffusion-weighted MRI after cryosurgery of the canine prostate. J Magn Reson Imaging 2003; 17:131–135. ; Rosenkrantz AB, Scionti SM, Mendrinos S, et al. Role of MRI in minimally invasive focal ablative therapy for prostate cancer. AJR Am J Roentgenol 2011; 197:W90–W96. ; Kalbhen CL, Hricak H, Shinohara K, et al. Prostate carcinoma: MR imaging findings after cryosurgery. Radiology 1996; 198:807–811. ; Lindner U, Lawrentschuk N, Weersink RA, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol 2010; 57:1111–1114. ; Lindner U, Trachtenberg J. Polascik TJ. MRI-guided laser ablation for localized prostate cancer. Imaging and Focal Therapy of Early Prostate Cancer. New York, NY:Springer; 2013. 297–307. ; Viswanath S, Toth R, Rusu M, et al. Quantitative evaluation of treatment related changes on multi-parametric MRI after laser interstitial thermal therapy of prostate cancer. Proc SPIE Int Soc Opt Eng 2013; 8671:86711F. ; Kulik M, Nedelcu C, Martin F, et al. Post-treatment MRI aspects of photodynamic therapy for prostate cancer. Insights Imaging 2014; 5:697–713. ; Oto A, Sethi I, Karczmar G, et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 2013; 267:932–940. ; Eggener SE, Yousuf A, Watson S, et al. Phase II evaluation of magnetic resonance imaging guided focal laser ablation of prostate cancer. J Urol 2016; 196:1670–1675. ; Le Nobin J, Rosenkrantz AB, Villers A, et al. Image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimensional treatment margin based on magnetic resonance imaging histology co-registration analysis. J Urol 2015; 194:364–370. ; Vogl TJ, Eichler K, Mack MG, et al. Interstitial photodynamic laser therapy in interventional oncology. Eur Radiol 2004; 14:1063–1073. ; Haider MA, Davidson SRH, Kale AV, et al. Prostate gland: MR imaging appearance after vascular targeted photodynamic therapy with palladium-bacteriopheophorbide. Radiology 2007; 244:196–204. ; Senge MO, Radomski MW. Platelets, photosensitizers, and PDT. Photodiagnosis Photodyn Ther 2013; 10:1–16. ; Ben-Hur E, Heldman E, Crane SW, et al. Release of clotting factors from photosensitized endothelial cells: a possible trigger for blood vessel occlusion by photodynamic therapy. FEBS Lett 1988; 236:105–108. ; Huang Z, Chen Q, Trncic N, et al. Effects of Pd- bacteriopheophorbide (TOOKAD)-mediated photodynamic therapy on canine prostate pretreated with ionizing radiation. Radiat Res 2004; 161:723–731. ; Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136:E359–E386. ; Chang DC. Electroporation and electrofusion. In: Meyers RA, ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. ; Van den Bos W, De Bruin DM, Muller BG, et al. The safety and efficacy of irreversible electroporation for the ablation of prostate cancer: a multicentre prospective human in vivo pilot study protocol. BMJ Open 2014; 4:e006382. ; Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33:223–231. ; Srimathveeravalli G, Francois C, Mashni J, et al. Comparison of ablation defect on MR imaging with computer simulation estimated treatment zone following irreversible electroporation of patient prostate. Springerplus 2016; 5:219. ; Van den Bos W, De Bruin DM, Van Randen A, et al. MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase I-II study in patients undergoing IRE followed by radical prostatectomy. Eur Radiol 2016; 26:2252–2260. ; Vanagas T, Gulbinas A, Pundzius J, et al. Radiofrequency ablation of liver tumors (I): biological background. Medicina (Kaunas) 2010; 46:13–17. ; Wong SL, Mangu PB, Choti MA, et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 2010; 28:493–508. ; Selli C, Scott CA, Garbagnati F, et al. Transurethral radiofrequency thermal ablation of prostatic tissue: a feasibility study in humans. Urology 2001; 57:78–82. ; Djavan B, Zlotta AR, Susani M, et al. Transperineal radiofrequency interstitial tumor ablation of the prostate: correlation of magnetic resonance imaging with histopathologic examination. Urology 1997; 50:986–992. ; Ahmed HU, Moore C, Lecornet E, et al. Focal therapy in prostate cancer: determinants of success and failure. J Endourol 2010; 24:819–825. ; Patel P, Melvy S, Mathew MS, et al. Multiparametric MR imaging of the prostate after treatment of prostate cancer. RadioGraphics 2018; 38:437–449.
  • Entry Date(s): Date Created: 20200205 Date Completed: 20200824 Latest Revision: 20210213
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -