Zum Hauptinhalt springen

Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses.

Mohamed, B ; Mazeaud, C ; et al.
In: Scientific reports, Jg. 10 (2020-03-04), Heft 1, S. 4040
Online academicJournal

Titel:
Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses.
Autor/in / Beteiligte Person: Mohamed, B ; Mazeaud, C ; Baril, M ; Poirier, D ; Sow, AA ; Chatel-Chaix, L ; Titorenko, V ; Lamarre, D
Link:
Zeitschrift: Scientific reports, Jg. 10 (2020-03-04), Heft 1, S. 4040
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2020
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-61051-w
Schlagwort:
  • 17-Hydroxysteroid Dehydrogenases genetics
  • Animals
  • Chlorocebus aethiops
  • HeLa Cells
  • Hep G2 Cells
  • Hepatitis C genetics
  • Humans
  • Vero Cells
  • Virus Replication genetics
  • 17-Hydroxysteroid Dehydrogenases metabolism
  • Hepacivirus physiology
  • Hepatitis C enzymology
  • Oleic Acid pharmacology
  • Virus Replication drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2020 Mar 04; Vol. 10 (1), pp. 4040. <i>Date of Electronic Publication: </i>2020 Mar 04.
  • MeSH Terms: 17-Hydroxysteroid Dehydrogenases / *metabolism ; Hepacivirus / *physiology ; Hepatitis C / *enzymology ; Oleic Acid / *pharmacology ; Virus Replication / *drug effects ; 17-Hydroxysteroid Dehydrogenases / genetics ; Animals ; Chlorocebus aethiops ; HeLa Cells ; Hep G2 Cells ; Hepatitis C / genetics ; Humans ; Vero Cells ; Virus Replication / genetics
  • References: Ravindran, M. S., Bagchi, P., Cunningham, C. N. & Tsai, B. Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat. Rev. Microbiol. 14, 407–420 (2016). (PMID: 10.1038/nrmicro.2016.602726576827265768) ; Chatel-Chaix, L. & Bartenschlager, R. Dengue virus- and hepatitis C virus-induced replication and assembly compartments: the enemy inside–caught in the web. J. Virology 88, 5907–5911 (2014). (PMID: 10.1128/JVI.03404-13) ; Konan, K. V. & Sanchez-Felipe, L. Lipids and RNA virus replication. Curr. Opin. Virol. 9, 45–52 (2014). (PMID: 10.1016/j.coviro.2014.09.0052526206125262061) ; Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell. Biol. 9, 1089–1097 (2007). (PMID: 10.1038/ncb1631) ; Samsa, M. M. et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 5, e1000632 (2009). (PMID: 10.1371/journal.ppat.10006321985145619851456) ; Romero-Brey, I. et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 8, e1003056 (2012). (PMID: 10.1371/journal.ppat.100305635165593516559) ; Shang, Z., Song, H., Shi, Y., Qi, J. & Gao, G. F. Crystal Structure of the Capsid Protein from Zika Virus. J. Mol. Biol. 430, 948–962 (2018). (PMID: 10.1016/j.jmb.2018.02.006) ; Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010). (PMID: 10.1016/j.chom.2010.10.00630266423026642) ; Amako, Y. et al. Hepatitis C virus attenuates mitochondrial lipid beta-oxidation by downregulating mitochondrial trifunctional-protein expression. J. Virol. 89, 4092–4101 (2015). (PMID: 10.1128/JVI.01653-1444423974442397) ; Syed, G. H., Amako, Y. & Siddiqui, A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 21, 33–40 (2010). (PMID: 10.1016/j.tem.2009.07.0051985406119854061) ; Bradley, D. et al. Hepatitis C virus: buoyant density of the factor VIII-derived isolate in sucrose. J. Med. Virol. 34, 206–208 (1991). (PMID: 10.1002/jmv.189034031516559701655970) ; Zhang, J. et al. Flaviviruses Exploit the Lipid Droplet Protein AUP1 to Trigger Lipophagy and Drive Virus Production. Cell Host Microbe 23, 819–831 e815 (2018). (PMID: 10.1016/j.chom.2018.05.0052990244329902443) ; Heaton, N. S. et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl Acad. Sci. USA 107, 17345–17350 (2010). (PMID: 10.1073/pnas.10108111072085559920855599) ; Martin-Acebes, M. A. & Blazquez, A. B. Jimenez de Oya, N., Escribano-Romero, E. & Saiz, J.C. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. PLoS One 6, e24970 (2011). (PMID: 10.1371/journal.pone.00249702194981421949814) ; Merino-Ramos, T. et al. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication. Antimicrob. Agents Chemother. 60, 307–315 (2016). (PMID: 10.1128/AAC.01578-152650365426503654) ; Nasheri, N. et al. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem. Biol. 20, 570–582 (2013). (PMID: 10.1016/j.chembiol.2013.03.0142360164623601646) ; Villareal, V. A., Rodgers, M. A., Costello, D. A. & Yang, P. L. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antivir. Res. 124, 110–121 (2015). (PMID: 10.1016/j.antiviral.2015.10.0132652658826526588) ; Nchoutmboube, J. A. et al. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog. 9, e1003401 (2013). (PMID: 10.1371/journal.ppat.100340136751553675155) ; Luu-The, V., Tremblay, P. & Labrie, F. Characterization of type 12 17beta-hydroxysteroid dehydrogenase, an isoform of type 3 17beta-hydroxysteroid dehydrogenase responsible for estradiol formation in women. Mol. Endocrinol. 20, 437–443 (2006). (PMID: 10.1210/me.2005-0058) ; Moon, Y. A. & Horton, J. D. Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade. J. Biol. Chem. 278, 7335–7343 (2003). (PMID: 10.1074/jbc.M2116842001248285412482854) ; Sassa, T. & Kihara, A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol. Ther. 22, 83–92 (2014). (PMID: 10.4062/biomolther.2014.017) ; Sakurai, N. et al. Systemic distribution and tissue localizations of human 17beta-hydroxysteroid dehydrogenase type 12. J. Steroid Biochem. Mol. Biol. 99, 174–181 (2006). (PMID: 10.1016/j.jsbmb.2006.01.0101662152316621523) ; Germain, M. A. et al. Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol. Cell Proteom. 13, 184–203 (2014). (PMID: 10.1074/mcp.M113.030155) ; Lupberger, J., et al. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of HCV-infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology (2019). ; Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003). (PMID: 10.1038/nature020991457891114578911) ; Kato, T. et al. Production of infectious hepatitis C virus of various genotypes in cell cultures. J. Virol. 81, 4405–4411 (2007). (PMID: 10.1128/JVI.02334-061730113117301131) ; Chatel-Chaix, L., Melancon, P., Racine, M. E., Baril, M. & Lamarre, D. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production. J. Virol. 85, 11022–11037 (2011). (PMID: 10.1128/JVI.00719-112184945521849455) ; Chatel-Chaix, L. et al. A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production. J. Virol. 87, 11704–11720 (2013). (PMID: 10.1128/JVI.01474-132398659523986595) ; Liefhebber, J. M., Hague, C. V., Zhang, Q., Wakelam, M. J. & McLauchlan, J. Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J. Biol. Chem. 289, 21276–21288 (2014). (PMID: 10.1074/jbc.M114.5829992491766824917668) ; Xu, K. & Nagy, P. D. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc. Natl Acad. Sci. USA 112, E1782–1791 (2015). (PMID: 10.1073/pnas.1418971112) ; Xu, K. & Nagy, P. D. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus. PLoS Biol. 14, e2000128 (2016). (PMID: 10.1371/journal.pbio.20001282776012827760128) ; Funari, S. S., Barcelo, F. & Escriba, P. V. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid Res. 44, 567–575 (2003). (PMID: 10.1194/jlr.M200356-JLR2001256287412562874) ; Targett-Adams, P., Boulant, S. & McLauchlan, J. Visualization of double-stranded RNA in cells supporting hepatitis C virus RNA replication. J. Virol. 82, 2182–2195 (2008). (PMID: 10.1128/JVI.01565-071809415418094154) ; Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005). (PMID: 10.1038/nm12681595174815951748) ; Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005). (PMID: 10.1073/pnas.0503596102) ; Lyn, R. K. et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci. Rep. 4, 4549 (2014). (PMID: 10.1038/srep0454940910944091094) ; Hofmann, S. et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 1041–1056 (2018). (PMID: 10.1016/j.bbalip.2018.06.0022988536329885363) ; Laplante, Y., Rancourt, C. & Poirier, D. Relative involvement of three 17beta-hydroxysteroid dehydrogenases (types 1, 7 and 12) in the formation of estradiol in various breast cancer cell lines using selective inhibitors. Mol. Cell Endocrinol. 301, 146–153 (2009). (PMID: 10.1016/j.mce.2008.08.0261881220818812208) ; Farhane, S., Laplante, Y. & Poirier, D. Chemical synthesis, characterisation and biological evaluation of furanic-estradiol derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1. Med. Chem. 7, 80–91 (2011). (PMID: 10.2174/1573406117948593522122261221222612) ; Jager, S. et al. Global landscape of HIV-human protein complexes. Nature 481, 365–370 (2011). (PMID: 10.1038/nature107192219003422190034) ; Wu, W. et al. The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology. J. Virol. 86, 7777–7789 (2012). (PMID: 10.1128/JVI.00460-1234216453421645) ; Bradel-Tretheway, B. G. et al. Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J. Virol. 85, 8569–8581 (2011). (PMID: 10.1128/JVI.00496-1131657793165779) ; Komarova, A. V. et al. Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses. Mol. Cell Proteom. 10, M110 007443 (2011). (PMID: 10.1074/mcp.M110.007443) ; Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012). (PMID: 10.1038/nature1128834088473408847) ; Farrell, G. C., Haczeyni, F. & Chitturi, S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv. Exp. Med. Biol. 1061, 19–44 (2018). (PMID: 10.1007/978-981-10-8684-7_3) ; Nguyen, L. N. et al. Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication. J. Virol. 88, 12311–12325 (2014). (PMID: 10.1128/JVI.01678-1442489424248942) ; Lee, W. M., Ishikawa, M. & Ahlquist, P. Mutation of host delta9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. J. Virol. 75, 2097–2106 (2001). (PMID: 10.1128/JVI.75.5.2097-2106.2001114794114794) ; Yang, W. et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48, 1396–1403 (2008). (PMID: 10.1002/hep.2250826149282614928) ; Berger, K. L., Kelly, S. M., Jordan, T. X., Tartell, M. A. & Randall, G. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J. Virol. 85, 8870–8883 (2011). (PMID: 10.1128/JVI.00059-1131658393165839) ; Perera, R. et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog. 8, e1002584 (2012). (PMID: 10.1371/journal.ppat.10025842245761922457619) ; Filipe, A. & McLauchlan, J. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol. Med. 21, 34–42 (2015). (PMID: 10.1016/j.molmed.2014.11.0032549665725496657) ; Harris, C., Herker, E., Farese, R. V. Jr. & Ott, M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J. Biol. Chem. 286, 42615–42625 (2011). (PMID: 10.1074/jbc.M111.2851482198483521984835) ; Bose, S. K. et al. Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J. Virol. 88, 4195–4203 (2014). (PMID: 10.1128/JVI.03327-132447843824478438) ; Camus, G. et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J. Biol. Chem. 289, 35770–35780 (2014). (PMID: 10.1074/jbc.M114.5878162538125225381252) ; Klemm, E. J., Spooner, E. & Ploegh, H. L. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602–37614 (2011). (PMID: 10.1074/jbc.M111.2847942185702221857022) ; Fujimoto, T. & Ohsaki, Y. Proteasomal and autophagic pathways converge on lipid droplets. Autophagy 2, 299–301 (2006). (PMID: 10.4161/auto.29041692126616921266) ; Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T. & Fujimoto, T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 17, 2674–2683 (2006). (PMID: 10.1091/mbc.e05-07-06591659770316597703) ; Hope, R. G. & McLauchlan, J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J. Gen. Virol. 81, 1913–1925 (2000). (PMID: 10.1099/0022-1317-81-8-19131090002810900028) ; Vauloup-Fellous, C. et al. Signal peptide peptidase-catalyzed cleavage of hepatitis C virus core protein is dispensable for virus budding but destabilizes the viral capsid. J. Biol. Chem. 281, 27679–27692 (2006). (PMID: 10.1074/jbc.M602587200) ; Boulant, S., Vanbelle, C., Ebel, C., Penin, F. & Lavergne, J. P. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J. Virol. 79, 11353–11365 (2005). (PMID: 10.1128/JVI.79.17.11353-11365.20051610318716103187) ; Laplante, Y. In vitro evaluation of inhibitors of 17beta-hydroxysteroid dehydrogenases type 1, 3, 12. Master thesis, Chapter 4, University of Laval, Quebec, Canada (2006). ; Richard, V. R., Bourque, S. D. & Titorenko, V. I. Metabolomic and lipidomic analyses of chronologically aging yeast. Methods Mol. Biol. 1205, 359–373 (2014). (PMID: 10.1007/978-1-4939-1363-3_212521325525213255) ; Shan, C. et al. An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe 19, 891–900 (2016). (PMID: 10.1016/j.chom.2016.05.0042719847827198478) ; Kumar, A. et al. Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J. Virol. 87, 4545–4557 (2013). (PMID: 10.1128/JVI.03083-122340861023408610)
  • Substance Nomenclature: 2UMI9U37CP (Oleic Acid) ; EC 1.1.- (17-Hydroxysteroid Dehydrogenases) ; EC 1.1.- (17beta-hydroxysteroid dehydrogenase type 3)
  • Entry Date(s): Date Created: 20200306 Date Completed: 20201109 Latest Revision: 20210304
  • Update Code: 20240513
  • PubMed Central ID: PMC7055353

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -