Zum Hauptinhalt springen

Adult Glioma WHO Classification Update, Genomics, and Imaging: What the Radiologists Need to Know.

Bai, J ; Varghese, J ; et al.
In: Topics in magnetic resonance imaging : TMRI, Jg. 29 (2020-04-01), Heft 2, S. 71-82
Online academicJournal

Titel:
Adult Glioma WHO Classification Update, Genomics, and Imaging: What the Radiologists Need to Know.
Autor/in / Beteiligte Person: Bai, J ; Varghese, J ; Jain, R
Link:
Zeitschrift: Topics in magnetic resonance imaging : TMRI, Jg. 29 (2020-04-01), Heft 2, S. 71-82
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: [Frederick, MD : Aspen Publishers, c1988-, 2020
Medientyp: academicJournal
ISSN: 1536-1004 (electronic)
DOI: 10.1097/RMR.0000000000000234
Schlagwort:
  • Adult
  • Biomarkers, Tumor
  • Brain diagnostic imaging
  • Brain Neoplasms diagnostic imaging
  • Genomics
  • Glioma diagnostic imaging
  • Humans
  • Prognosis
  • Radiologists
  • World Health Organization
  • Brain Neoplasms classification
  • Brain Neoplasms genetics
  • Glioma classification
  • Glioma genetics
  • Magnetic Resonance Imaging methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Top Magn Reson Imaging] 2020 Apr; Vol. 29 (2), pp. 71-82.
  • MeSH Terms: Brain Neoplasms / *classification ; Brain Neoplasms / *genetics ; Glioma / *classification ; Glioma / *genetics ; Magnetic Resonance Imaging / *methods ; Adult ; Biomarkers, Tumor ; Brain / diagnostic imaging ; Brain Neoplasms / diagnostic imaging ; Genomics ; Glioma / diagnostic imaging ; Humans ; Prognosis ; Radiologists ; World Health Organization
  • References: DeWeerdt S. The genomics of brain cancer. Nature 2018; 561:S54–S55. ; Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114:97–109. ; Coons SW, Johnson PC, Scheithauer BW, et al. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 1997; 79:1381–1393. ; van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective. Acta Neuropathol 2010; 120:297–304. ; Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807–1812. ; Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360:765–773. ; Ransom DT, Ritland SR, Kimmel DW, et al. Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chromosomes Cancer 1992; 5:348–356. ; Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66:9852–9861. ; Riemenschneider MJ, Jeuken JW, Wesseling P, et al. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 2010; 120:567–584. ; Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008; 26:2192–2197. ; Raabe EH, Lim KS, Kim JM, et al. BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 2011; 17:3590–3599. ; Johnson A, Severson E, Gay L, et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 2017; 22:1478–1490. ; Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131:803–820. ; Karremann M, Gielen GH, Hoffmann M, et al. Diffuse high-grade gliomas with H3 K27 M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol 2018; 20:123–131. ; Haase S, Garcia-Fabiani MB, Carney S, et al. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22:599–613. ; Leeper HE, Caron AA, Decker PA, et al. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 2015; 6:30295–30305. ; Wiestler B, Capper D, Holland-Letz T, et al. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 2013; 126:443–451. ; Yousem DM, Gad K, Tufano RP. Resectability issues with head and neck cancer. AJNR Am J Neuroradiol 2006; 27:2024–2036. ; Wang X, Chen JX, Liu JP, et al. Gain of function of mutant TP53 in glioblastoma: prognosis and response to temozolomide. Ann Surg Oncol 2014; 21:1337–1344. ; Gillet E, Alentorn A, Doukoure B, et al. TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 2014; 118:131–139. ; Liu J, Zhang X, Yan X, et al. Significance of TERT and ATRX mutations in glioma. Oncol Lett 2019; 17:95–102. ; Lee Y, Koh J, Kim SI, et al. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 2017; 5:62. ; Louis DN, Perry A, Burger P, et al. International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 2014; 24:429–435. ; Brat DJ, Verhaak RG, Aldape KD, et al. Cancer Genome Atlas Research NetworkComprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372:2481–2498. ; Cairncross JG, Wang M, Jenkins RB, et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014; 32:783–790. ; Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016; 374:1344–1355. ; van den Bent MJ, Brandes AA, Taphoorn MJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31:344–350. ; van den Bent MJ, Baumert B, Erridge SC, et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 2017; 390:1645–1653. ; Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 2018; 136:805–810. ; Smits M, van den Bent MJ. Imaging correlates of adult glioma genotypes. Radiology 2017; 284:316–331. ; Wang Y, Zhang T, Li S, et al. Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomas. Eur J Neurol 2015; 22:348–354. ; Qi S, Yu L, Li H, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett 2014; 7:1895–1902. ; Carrillo JA, Lai A, Nghiemphu PL, et al. Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 2012; 33:1349–1355. ; Sherman JH, Prevedello DM, Shah L, et al. MR imaging characteristics of oligodendroglial tumors with assessment of 1p/19q deletion status. Acta Neurochir (Wien) 2010; 152:1827–1834. ; Kim JW, Park CK, Park SH, et al. Relationship between radiological characteristics and combined 1p and 19q deletion in World Health Organization grade III oligodendroglial tumours. J Neurol Neurosurg Psychiatry 2011; 82:224–227. ; Megyesi JF, Kachur E, Lee DH, et al. Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res 2004; 10:4303–4306. ; Jenkinson MD, du Plessis DG, Smith TS, et al. Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain 2006; 129:1884–1891. ; Patel SH, Poisson LM, Brat DJ, et al. T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res 2017; 23:6078–6085. ; Broen MPG, Smits M, Wijnenga MMJ, et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol 2018; 20:1393–1399. ; Juratli TA, Tummala SS, Riedl A, et al. Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. J Neurooncol 2019; 141:327–335. ; Lasocki A, Gaillard F, Gorelik A, et al. MRI features can predict 1p/19q status in intracranial gliomas. AJNR Am J Neuroradiol 2018; 39:687–692. ; Johnson DR, Kaufmann TJ, Patel SH, et al. There is an exception to every rule-T2-FLAIR mismatch sign in gliomas. Neuroradiology 2019; 61:225–227. ; Drabycz S, Roldan G, de Robles P, et al. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 2010; 49:1398–1405. ; Andronesi OC, Kim GS, Gerstner E, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 2012; 4:116ra4. ; Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18:624–629. ; Leather T, Jenkinson MD, Das K, et al. Magnetic resonance spectroscopy for detection of 2-hydroxyglutarate as a biomarker for IDH mutation in gliomas. Metabolites 2017; 7:pii: E29. ; Kickingereder P, Sahm F, Radbruch A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 2015; 5:16238. ; Tan W, Xiong J, Huang W, et al. Noninvasively detecting Isocitrate dehydrogenase 1 gene status in astrocytoma by dynamic susceptibility contrast MRI. J Magn Reson Imaging 2017; 45:492–499. ; Yamashita K, Hiwatashi A, Togao O, et al. MR imaging-based analysis of glioblastoma multiforme: estimation of IDH1 mutation status. AJNR Am J Neuroradiol 2016; 37:58–65. ; Wu CC, Jain R, Radmanesh A, et al. Predicting genotype and survival in glioma using standard clinical mr imaging apparent diffusion coefficient images: a pilot study from the Cancer Genome Atlas. AJNR Am J Neuroradiol 2018; 39:1814–1820. ; Villanueva-Meyer JE, Wood MD, Choi BS, et al. MRI features and IDH mutational status of grade II diffuse gliomas: impact on diagnosis and prognosis. AJR Am J Roentgenol 2018; 210:621–628. ; Eichinger P, Alberts E, Delbridge C, et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 2017; 7:13396. ; Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012; 263:492–501. ; Tietze A, Hansen MB, Ostergaard L, et al. Mean diffusional kurtosis in patients with glioma: initial results with a fast imaging method in a clinical setting. AJNR Am J Neuroradiol 2015; 36:1472–1478. ; Delgado AF, Fahlstrom M, Nilsson M, et al. Diffusion kurtosis imaging of gliomas grades II and III: a study of perilesional tumor infiltration, tumor grades and subtypes at clinical presentation. Radiol Oncol 2017; 51:121–129. ; Falk Delgado A, Nilsson M, van Westen D, et al. Glioma grade discrimination with MR diffusion kurtosis imaging: a meta-analysis of diagnostic accuracy. Radiology 2018; 287:119–127. ; Saadeh FS, Mahfouz R, Assi HI. EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers 2018; 33:22–32.
  • Substance Nomenclature: 0 (Biomarkers, Tumor)
  • Entry Date(s): Date Created: 20200410 Date Completed: 20200924 Latest Revision: 20210213
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -