Zum Hauptinhalt springen

The dead phosphatases society: a review of the emerging roles of pseudophosphatases.

Reiterer, V ; Pawłowski, K ; et al.
In: The FEBS journal, Jg. 287 (2020-10-01), Heft 19, S. 4198-4220
Online academicJournal

Titel:
The dead phosphatases society: a review of the emerging roles of pseudophosphatases.
Autor/in / Beteiligte Person: Reiterer, V ; Pawłowski, K ; Desrochers, G ; Pause, A ; Sharpe, HJ ; Farhan, H
Link:
Zeitschrift: The FEBS journal, Jg. 287 (2020-10-01), Heft 19, S. 4198-4220
Veröffentlichung: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-, 2020
Medientyp: academicJournal
ISSN: 1742-4658 (electronic)
DOI: 10.1111/febs.15431
Schlagwort:
  • Animals
  • Humans
  • Phosphoric Monoester Hydrolases
  • Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language: English
  • [FEBS J] 2020 Oct; Vol. 287 (19), pp. 4198-4220. <i>Date of Electronic Publication: </i>2020 Jun 16.
  • MeSH Terms: Phosphoric Monoester Hydrolases* ; Proteins / *metabolism ; Animals ; Humans
  • References: Lim WA & Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661-667. ; Murphy JM, Farhan H & Eyers PA (2017) Bio-Zombie: the rise of pseudoenzymes in biology. Biochem Soc Trans 45, 537-544. ; Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM & Eyers PA (2019) Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 12, eaat9797. ; Reiterer V, Eyers PA & Farhan H (2014) Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 24, 489-505. ; Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR & Tagliabracci VS (2019) Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364, 787-792. ; Sreelatha A, Yee SS, Lopez VA, Park BC, Kinch LN, Pilch S, Servage KA, Zhang J, Jiou J, Karasiewicz-Urbańska M et al. (2018) Protein AMPylation by an evolutionarily conserved pseudokinase. Cell 175, 809-821.e819. ; Shrestha S, Byrne DP, Harris JA, Kannan N & Eyers PA (2020) Cataloguing the dead: breathing new life into pseudokinase research. FEBS J. 287, 4150-4169. ; Manning G, Whyte DB, Martinez R, Hunter T & Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298, 1912-1934. ; Chen MJ, Dixon JE & Manning G (2017) Genomics and evolution of protein phosphatases. Sci Signal 10, eaag1796. ; Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK & Møller NPH (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18, 8-30. ; Li X, Wilmanns M, Thornton J & Köhn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6, rs10-rs10. ; Knudsen M & Wiuf C (2010) The CATH database. Hum Genomics 4, 207-212. ; Damle NP & Köhn M. (2019) The human DEPhOsphorylation Database DEPOD: 2019 update. Database 2019. DEPhOsphorylation Database. ; Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE & Tonks NK (2017) Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev. ; Brognard J, Sierecki E, Gao T & Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25, 917-931. ; Denu JM, Stuckey JA, Saper MA & Dixon JE (1996) Form and function in protein dephosphorylation. Cell 87, 361-364. ; Denu JM, Lohse DL, Vijayalakshmi J, Saper MA & Dixon JE (1996) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci 93 (6), 2493-2498. ; Tautz L, Critton DA & Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. In Phosphatase Modulators (Millán JL, ed), pp. 179-221. Humana Press, Totowa, NJ. ; Tonks NK (2013) Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. 280, 346-378. ; Wishart MJ, Denu JM, Williams JA & Dixon JE (1995) A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem 270, 26782-26785. ; Reiterer V, Fey D, Kolch W, Kholodenko BN & Farhan H (2013) Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proc Natl Acad Sci 110 (31), E2934-E2943. ; Wishart MJ & Dixon JE (2002) The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci USA 99, 2112-2117. ; St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JDR, Rajendran D, Couzens AL, Currie KW, Tkach JM et al. (2016) Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep 17, 2488-2501. ; Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C et al. (2017) The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. The EMBO journal 36, 260-273. ; Skaar JR, Pagan JK & Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14, 369. ; Yeh C-H, Bellon M & Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17, 115. ; He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L et al. (2019) Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 454, 53-65. ; Reiterer V, Pawłowski K & Farhan H (2017) STYX: a versatile pseudophosphatase. Biochem Soc Trans 45, 449-456. ; Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G & Ruiz-Trillo I (2012) Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5, ra35-ra35. ; Kosti I, Mandel-Gutfreund Y, Glaser F & Horwitz BA (2010) Comparative analysis of fungal protein kinases and associated domains. BMC Genom 11, 133. ; Wishart MJ & Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 23, 301-306. ; Hinton SD, Myers MP, Roggero VR, Allison LA & Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427, 349-357. ; Protter DSW & Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26, 668-679. ; Niemi NM, Lanning NJ, Klomp JA, Tait SW, Xu Y, Dykema KJ, Murphy LO, Gaither LA, Xu HE, Furge KA et al. (2011) STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis. Mol Cell Biol 31, 1357-1368. ; MacKeigan JP, Murphy LO & Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7, 591-600. ; Niemi NM, Sacoman JL, Westrate LM, Gaither LA, Lanning NJ, Martin KR & MacKeigan JP (2014) The pseudophosphatase MK-STYX physically and genetically interacts with the mitochondrial phosphatase PTPMT1. PLoS One 9, e93896. ; Siligan C, Ban J, Bachmaier R, Spahn L, Kreppel M, Schaefer K-L, Poremba C, Aryee DNT & Kovar H (2005) EWS-FLI1 target genes recovered from Ewing's sarcoma chromatin. Oncogene 24, 2512-2524. ; Isrie M, Zamani Esteki M, Peeters H, Voet T, Van Houdt J, Van Paesschen W & Van Esch H (2015) Homozygous missense mutation in STYXL1 associated with moderate intellectual disability, epilepsy and behavioural complexities. Eur J Med Genet 58, 205-210. ; Flowers BM, Rusnak LE, Wong KE, Banks DA, Munyikwa MR, McFarland AG & Hinton SD (2014) The pseudophosphatase MK-STYX induces neurite-like outgrowths in PC12 cells. PLoS One 9, e114535. ; Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugssa A, Anderson WA & Hinton SD (2017) MK-STYX alters the morphology of primary neurons, and outgrowths in MK-STYX Overexpressing PC-12 cells develop a neuronal phenotype. Frontiers in molecular biosciences 4, 76. ; Friedberg I, Nika K, Tautz L, Saito K, Cerignoli F, Friedberg I, Godzik A & Mustelin T (2007) Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Lett 581, 2527-2533. ; Iio K, Nagasawa Y, Iwatani H, Yamamoto R, Horii A, Okuzaki D, Furumatsu Y, Inohara H, Nojima H, Imai E et al. (2010) Microarray analysis of tonsils in immunoglobulin A nephropathy patients. Biochem Biophys Res Comm 393, 565-570. ; Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J & Kreek MJ (2010) Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 20, 207-214. ; Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK & Møller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21, 7117-7136. ; Saharinen P, Takaluoma K & Silvennoinen O (2000) Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20, 3387-3395. ; Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R & Hubbard Stevan R (2013) New insights into the structure and function of the pseudokinase domain in JAK2. Biochem Soc Trans 41, 1002-1007. ; Lemmon MA & Schlessinger J (2010) Cell Signaling by receptor tyrosine kinases. Cell 141, 1117-1134. ; Bouyain S & Watkins DJ (2010) The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci 107, 2443. ; Nikolaienko RM, Hammel M, Dubreuil V, Zalmai R, Hall DR, Mehzabeen N, Karuppan SJ, Harroch S, Stella SL & Bouyain S (2016) Structural basis for interactions between contactin family members and protein-tyrosine phosphatase receptor type G in neural tissues. J Biol Chem 291, 21335-21349. ; Meng K, Rodríguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M & Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. Proc Natl Acad Sci 97, 2603. ; Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S & Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136, 352-363. ; Fujikawa A, Sugawara H, Tanga N, Ishii K, Kuboyama K, Uchiyama S, Suzuki R & Noda M (2019) A head-to-toe dimerization has physiological relevance for ligand-induced inactivation of protein tyrosine receptor type Z. J Biol Chem 294, 14953-14965. ; Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL et al. (2006) The HSPGs syndecan and dallylike bind the receptor phosphatase lar and exert distinct effects on synaptic development. Neuron 49, 517-531. ; Sakamoto K, Ozaki T, Ko Y-C, Tsai C-F, Gong Y, Morozumi M, Ishikawa Y, Uchimura K, Nadanaka S, Kitagawa H et al. (2019) Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat Chem Biol. ; Wallace MJ, Fladd C, Batt J & Rotin D (1998) The Second Catalytic Domain of Protein Tyrosine Phosphatase δ (PTPδ) Binds to and Inhibits the First Catalytic Domain of PTPς. Mol Cell Biol 18, 2608-2616. ; Nam H-J, Poy F, Krueger NX, Saito H & Frederick CA (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449-457. ; Blanchetot C, Tertoolen LG, Overvoorde J & den Hertog J (2002) Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. J Biol Chem 277, 47263-47269. ; Jiang G, den Hertog J & Hunter T (2000) Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface. Mol Cell Biol 20, 5917-5929. ; Jeon TJ, Chien PN, Chun H-J & Ryu SE (2013) Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Mol Cells 36, 55-61. ; Nam H-J, Poy F, Saito H & Frederick CA (2005) Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 201, 441-452. ; Kashio N, Matsumoto W, Parker S & Rothstein DM (1998) The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCR-ζ in vivo. J Biol Chem 273, 33856-33863. ; Felberg J, Lefebvre DC, Lam M, Wang Y, Ng DHW, Birkenhead D, Cross JL & Johnson P (2004) Subdomain X of the kinase domain of Lck binds CD45 and facilitates dephosphorylation. J Biol Chem 279, 3455-3462. ; Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K et al. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349. ; Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang W-C, Martinez-Martin N, Lin W, Deane JE & Sharpe HJ (2019) The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 8, e44597. ; Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML & Saragovi HU (2014) Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol Pharmacol 85, 553. ; Veal EA, Day AM & Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26, 1-14. ; Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain Jonathan R, Jin Lily L, Harris Isaac S, Mori J, Mak Tak W, Senis Yotis A et al. (2011) Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and “Redoxome”. Cell 146, 826-840. ; van der Reest J, Lilla S, Zheng L, Zanivan S & Gottlieb E (2018) Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat Commun 9, 1581. ; Salmeen A, Andersen JN, Myers MP, Meng T-C, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769. ; Machado LESF, Critton DA, Page R & Peti W (2017) Redox regulation of a gain-of-function mutation (N308D) in SHP2 noonan syndrome. ACS Omega 2, 8313-8318. ; Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194, 7. ; Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667-670. ; Yang J, Groen A, Lemeer S, Jans A, Slijper M, Roe SM, den Hertog J & Barford D (2007) Reversible oxidation of the membrane distal domain of receptor PTPα is mediated by a cyclic sulfenamide. Biochemistry 46, 709-719. ; Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJR, Ostman A, Barford D, Slijper M & den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280, 10298-10304. ; van der Wijk T, Overvoorde J & den Hertog J (2004) H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases. J Biol Chem 279, 44355-44361. ; Groen A, Overvoorde J, van der Wijk T & den Hertog J (2008) Redox regulation of dimerization of the receptor protein-tyrosine phosphatases RPTPα, LAR, RPTPμ and CD45. The FEBS Journal 275, 2597-2604. ; van der Wijk T, Blanchetot C, Overvoorde J & den Hertog J (2003) Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase α dimers. J Biol Chem 278, 13968-13974. ; Wang H, Lian Z, Lerch MM, Chen Z, Xie W & Ullrich A (1996) Characterization of PCP-2, a novel receptor protein tyrosine phosphatase of the MAM domain family. Oncogene 12, 2555-2562. ; Gu J, Zhang Z, Lang T, Ma X, Yang L, Xu J, Tian C, Han K & Qiu J (2019) PTPRU, as a tumor suppressor, inhibits cancer stemness by attenuating Hippo/YAP signaling pathway. Onco Targets Ther 12, 8095-8104. ; Liu Y, Zhu Z, Xiong Z, Zheng J, Hu Z & Qiu J (2014) Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells. International journal of clinical and experimental pathology 7, 5750-5761. ; Aerne B & Ish-Horowicz D (2004) receptor tyrosine phosphatase ψ is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm. Development 131, 3391. ; Aerne B, Stoker A & Ish-Horowicz D (2003) Chick receptor tyrosine phosphatase Ψ is dynamically expressed during somitogenesis. Gene Expr Patterns 3, 325-329. ; Badde A, Bumsted-O'Brien KM & Schulte D (2005) Chick receptor protein tyrosine phosphatase λ/ψ (cRPTPλ/cRPTPψ) is dynamically expressed at the midbrain-hindbrain boundary and in the embryonic neural retina. Gene Expr Patterns 5, 786-791. ; Badde A & Schulte D (2008) A role for receptor protein tyrosine phosphatase λ in midbrain development. The Journal of Neuroscience 28, 6152. ; Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ & Deane JE (2019) The receptor PTPRU is a redox sensitive pseudophosphatase. bioRxiv, 805119. ; Streuli M, Krueger NX, Thai T, Tang M & Saito H (1990) Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. The EMBO journal 9, 2399-2407. ; Caromile LA, Oganesian A, Coats SA, Seifert RA & Bowen-Pope DF (2010) The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion. J Biol Chem 285, 10487-10496. ; Rabin DU, Pleasic SM, Palmer-Crocker R & Shapiro JA (1992) Cloning and expression of IDDM-specific human autoantigens. Diabetes 41, 183-186. ; Lan MS, Lu J, Goto Y & Notkins AL (1994) Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13, 505-514. ; Solimena M, Dirkx R Jr, Hermel JM, Pleasic-Williams S, Shapiro JA, Caron L & Rabin DU (1996) ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. The EMBO journal 15, 2102-2114. ; Lan MS, Wasserfall C, Maclaren NK & Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci 93, 6367-6370. ; Bonifacio E, Lampasona V & Bingley PJ (1998) IA-2 (Islet Cell Antigen 512) is the primary target of humoral autoimmunity against type 1 diabetes-associated tyrosine phosphatase autoantigens. J Immunol 161, 2648-2654. ; Magistrelli G, Toma S & Isacchi A (1996) Substitution of two variant residues in the protein tyrosine phosphatase-like PTP35/IA-2 sequence reconstitutes catalytic activity. Biochem Biophys Res Comm 227, 581-588. ; Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS & Notkins AL (2002) Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes 51, 1842-1850. ; Harashima S, Clark A, Christie MR & Notkins AL (2005) The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. Proc Natl Acad Sci USA 102, 8704-8709. ; Hermel J-M, Dirkx R Jr & Solimena M (1999) Post-translational modifications of ICA512, a receptor tyrosine phosphatase-like protein of secretory granules. Eur J Neurosci 11, 2609-2620. ; Trajkovski M, Mziaut H, Altkrüger A, Ouwendijk J, Knoch K-P, Müller S & Solimena M (2004) Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in β-cells. J Cell Biol 167, 1063-1074. ; Mziaut H, Trajkovski M, Kersting S, Ehninger A, Altkrüger A, Lemaitre RP, Schmidt D, Saeger H-D, Lee M-S, Drechsel DN et al. (2006) Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. Nat Cell Biol 8, 435-445. ; Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel J-M, Zhang J-P, Philbrick W, Slepnev V, Ort T et al. (2000) βiv Spectrin, a New Spectrin Localized at Axon Initial Segments and Nodes of Ranvier in the Central and Peripheral Nervous System. J Cell Biol 151, 985-1002. ; Ort T, Maksimova E, Dirkx R, Kachinsky AM, Berghs S, Froehner SC & Solimena M (2000) The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of β2-syntrophin and nNOS in pancreatic β-cells. Eur J Cell Biol 79, 621-630. ; Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jager M, Altkruger A, Wegbrod C, Adams ME, Kim Y et al. (2010) beta2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PLoS One 5, e12929. ; Trajkovski M, Mziaut H, Schubert S, Kalaidzidis Y, Altkrüger A & Solimena M (2008) Regulation of Insulin Granule Turnover in Pancreatic β-Cells by Cleaved ICA512. J Biol Chem 283, 33719-33729. ; Mziaut H, Mulligan B, Hoboth P, Otto O, Ivanova A, Herbig M, Schumann D, Hildebrandt T, Dehghany J, Sönmez A et al. (2016) The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Molecular Metabolism 5, 656-668. ; Gross S, Blanchetot C, Schepens J, Albet S, Lammers R, den Hertog J & Hendriks W (2002) Multimerization of the Protein-tyrosine Phosphatase (PTP)-like Insulin-dependent Diabetes Mellitus Autoantigens IA-2 and IA-2β with Receptor PTPs (RPTPs): INHIBITION OF RPTPα ENZYMATIC ACTIVITY. J Biol Chem 277, 48139-48145. ; Lu J, Li Q, Xie H, Chen ZJ, Borovitskaya AE, Maclaren NK, Notkins AL & Lan MS (1996) Identification of a second transmembrane protein tyrosine phosphatase, IA-2beta, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment. Proc Natl Acad Sci 93, 2307-2311. ; Notkins AL, Zhang B, Matsumoto Y & Lan MS (1997) Comparison of IA-2 with IA-2β and with Six Other Members of the Protein Tyrosine Phosphatase Family: Recognition of Antigenic Determinants by IDDM Sera. J Autoimmun 10, 245-250. ; Wasmeier C & Hutton JC (1996) Molecular Cloning of Phogrin, a Protein-tyrosine Phosphatase Homologue Localized to Insulin Secretory Granule Membranes. J Biol Chem 271, 18161-18170. ; Cui L, Yu W-P, DeAizpurua HJ, Schmidli RS & Pallen CJ (1996) Cloning and Characterization of Islet Cell Antigen-related Protein-tyrosine Phosphatase (PTP), a Novel Receptor-like PTP and Autoantigen in Insulin-dependent Diabetes. J Biol Chem 271, 24817-24823. ; Fitzgerald LR, Walton KM, Dixon JE & Largent BL (1997) PTP NE-6: A Brain-Enriched Receptor-Type Protein Tyrosine Phosphatase with a Divergent Catalytic Domain. J Neurochem 68, 1820-1829. ; Kubosaki A, Gross S, Miura J, Saeki K, Zhu M, Nakamura S, Hendriks W & Notkins AL (2004) Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 53, 1684-1691. ; Kubosaki A, Nakamura S, Clark A, Morris JF & Notkins AL (2006) Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2beta causes female infertility. Endocrinology 147, 811-815. ; Gingras M-C, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML & Pause A (2009) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4, e5105. ; Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L & Maier JAM (2009) HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol 41, 687-693. ; Castiglioni S, Maier JAM & Mariotti M (2007) The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochem Biophys Res Comm 364, 534-539. ; Lin G, Aranda V, Muthuswamy SK & Tonks NK (2011) Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the 'PTP-ome'. Genes Dev 25, 1412-1425. ; Jariwala N, Mendoza RG, Garcia D, Lai Z, Subler MA, Windle JJ, Mukhopadhyay ND, Fisher PB, Chen Y & Sarkar D (2019) Posttranscriptional Inhibition of Protein Tyrosine Phosphatase Nonreceptor Type 23 by Staphylococcal Nuclease and Tudor Domain Containing 1: Implications for Hepatocellular Carcinoma. Hepatol Commun 3, 1258-1270. ; Desrochers G, Kazan JM & Pause A (2019) Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer (1). Biochem Cell Biol 97, 68-72. ; Ma H, Wardega P, Mazaud D, Klosowska-Wardega A, Jurek A, Engström U, Lennartsson J & Heldin C-H (2015) Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell Signal 27, 2209-2219. ; Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras M-C, Takagi J, Lukacs GL & Pause A (2015) Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration. Cell Rep 13, 599-609. ; Doyotte A, Mironov A, McKenzie E & Woodman P (2008) The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad Sci USA 105, 6308-6313. ; Ali N, Zhang L, Taylor S, Mironov A, Urbé S & Woodman P (2013) Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol 23, 453-461. ; Gingras M-C, Kharitidi D, Chénard V, Uetani N, Bouchard M, Tremblay ML & Pause A (2009) Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol 53, 1069-1074. ; Bend R, Cohen L, Carter MT, Lyons MJ, Niyazov D, Mikati MA, Rojas SK, Person RE, Si Y, Wentzensen IM et al. (2020) Phenotype and mutation expansion of the PTPN23 associated disorder characterized by neurodevelopmental delay and structural brain abnormalities. Eur J Hum Genet 28, 76-87. ; Manteghi S, Gingras M-C, Kharitidi D, Galarneau L, Marques M, Yan M, Cencic R, Robert F, Paquet M, Witcher M et al. (2016) Haploinsufficiency of the ESCRT Component HD-PTP Predisposes to Cancer. Cell Rep 15, 1893-1900. ; Wadham C, Gamble JR, Vadas MA & Khew-Goodall Y (2003) The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Mol Biol Cell 14, 2520-2529. ; Zhang P, Guo A, Possemato A, Wang C, Beard L, Carlin C, Markowitz SD, Polakiewicz RD & Wang Z (2013) Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene 32, 2087-2095. ; Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH & Zhang J (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273. ; Choi J, Saraf A, Florens L, Washburn MP & Busino L (2018) PTPN14 regulates Roquin2 stability by tyrosine dephosphorylation. Cell Cycle 17, 2243-2255. ; Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L, Niu H, Billy E, Wartmann M, Ito M et al. (2013) The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8, e61916. ; Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM et al. (2017) A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 32, 460-473.e466. ; Chen K-E, Li M-Y, Chou C-C, Ho M-R, Chen G-C, Meng T-C & Wang AHJ (2015) Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases. Structure 23, 653-664. ; Chen G, Yang Z, Feng M & Wang Z (2020) microRNA-217 suppressed epithelial-to-mesenchymal transition through targeting PTPN14 in gastric cancer. Biosci Rep 40, BSR20193176. ; Han X, Sun T, Hong J, Wei R, Dong Y, Huang D, Chen J, Ren X, Zhou H, Tian W et al. (2019) Nonreceptor tyrosine phosphatase 14 promotes proliferation and migration through regulating phosphorylation of YAP of Hippo signaling pathway in gastric cancer cells. J Cell Biochem 120, 17723-17730. ; Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, Herrmann D, Conway JRW, Gehling FK, Bert AG et al. (2015) The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal 8, ra18-ra18. ; Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C & Feliciello A (2008) Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem 283, 10919-10929. ; Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L et al. (2010) PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem 285, 39260-39270. ; Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H, Brandt J, Kaverina I & Straube A (2019) PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat Commun 10, 2693. ; Ni F, Yu W-M, Wang X, Fay ME, Young KM, Qiu Y, Lam WA, Sulchek TA, Cheng T, Scadden DT et al. (2019) Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell 24, 608-620.e606. ; Berndsen K, Lis P, Yeshaw WM, Wawro PS, Nirujogi RS, Wightman M, Macartney T, Dorward M, Knebel A, Tonelli F et al. (2019) PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. eLife 8, e50416. ; Haynie DT & Ponting CP (1996) The N-terminal domains of tensin and auxilin are phosphatase homologues. Protein Sci 5, 2643-2646. ; Lee D-W, Wu X, Eisenberg E & Greene LE (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119, 3502-3512. ; Eto M, Kirkbride J, Elliott E, Lo SH & Brautigan DL (2007) Association of the tensin N-terminal protein-tyrosine phosphatase domain with the alpha isoform of protein phosphatase-1 in focal adhesions. J Biol Chem 282, 17806-17815. ; Hall EH, Daugherty AE, Choi CK, Horwitz AF & Brautigan DL (2009) Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem 284, 34713-34722. ; Koh A, Lee MN, Yang YR, Jeong H, Ghim J, Noh J, Kim J, Ryu D, Park S, Song P et al. (2013) C1-Ten is a protein tyrosine phosphatase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy. Mol Cell Biol 33, 1608-1620. ; Kim E, Kim DH, Singaram I, Jeong H, Koh A, Lee J, Cho W & Ryu SH (2018) Cellular phosphatase activity of C1-Ten/Tensin2 is controlled by Phosphatidylinositol-3,4,5-triphosphate binding through the C1-Ten/Tensin2 SH2 domain. Cell Signal 51, 130-138. ; Hnia K, Vaccari I, Bolino A & Laporte J (2012) Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med 18, 317-327. ; Raess MA, Friant S, Cowling BS & Laporte J (2017) WANTED - Dead or alive: Myotubularins, a large disease-associated protein family. Adv Biol Regul 63, 49-58. ; Mochizuki Y & Majerus PW (2003) Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9. Proc Natl Acad Sci 100, 9768-9773. ; Kim S-A, Vacratsis PO, Firestein R, Cleary ML & Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci USA 100, 4492-4497. ; Doubravská L, Dostál V, Knop F, Libusová L & Macůrková M (2019) Human myotubularin-related protein 9 regulates ER-to-Golgi trafficking and modulates WNT3A secretion. Exp Cell Res 111709. ; Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139, 468-484. ; Min X, Lee BH, Cobb MH & Goldsmith EJ (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12, 1303-1311. ; Newton AC & Trotman LC (2014) Turning off AKT: PHLPP as a drug target. Annu Rev Pharmacol Toxicol 54, 537-558. ; Grzechnik AT & Newton AC (2016) PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem Soc Trans 44, 1675-1682. ; Conner SH, Kular G, Peggie M, Shepherd S, Schüttelkopf AW, Cohen P & Van Aalten DMF (2006) TAK1-binding protein 1 is a pseudophosphatase. Biochem J 399, 427-434. ; Choi JH, Williams J, Cho J, Falck JR & Shears SB (2007) Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem 282, 30763-30775. ; Gokhale NA, Zaremba A & Shears SB (2011) Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J 434, 415-426. ; Wang H, Nair VS, Holland AA, Capolicchio S, Jessen HJ, Johnson MK & Shears SB (2015) Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry 54, 6462-6474. ; Randall TA, Gu C, Li X, Wang H & Shears SB (2020) A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 75, 100674. ; Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N & Rehling P (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507-518. ; Guo Y, Cheong N, Zhang Z, De Rose R, Deng Y, Farber SA, Fernandes-Alnemri T & Alnemri ES (2004) Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J Biol Chem 279, 24813-24825. ; Stanford SM & Bottini N (2017) Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol Sci 38, 524-540. ; Paiva S-L & Crews CM (2019) Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol 50, 111-119.
  • Grant Information: PJT-152966 Canadian Institute of Health Research; 109407 United Kingdom WT_ Wellcome Trust
  • Contributed Indexing: Keywords: dephosphorylation; phosphatase; pseudoenzymes; pseudophosphatase
  • Substance Nomenclature: 0 (Proteins) ; EC 3.1.3.2 (Phosphoric Monoester Hydrolases)
  • Entry Date(s): Date Created: 20200603 Date Completed: 20210517 Latest Revision: 20210517
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -