Zum Hauptinhalt springen

Molecular architecture of the human 17S U2 snRNP.

Zhang, Z ; Will, CL ; et al.
In: Nature, Jg. 583 (2020-07-01), Heft 7815, S. 310-313
academicJournal

Titel:
Molecular architecture of the human 17S U2 snRNP.
Autor/in / Beteiligte Person: Zhang, Z ; Will, CL ; Bertram, K ; Dybkov, O ; Hartmuth, K ; Agafonov, DE ; Hofele, R ; Urlaub, H ; Kastner, B ; Lührmann, R ; Stark, H
Zeitschrift: Nature, Jg. 583 (2020-07-01), Heft 7815, S. 310-313
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2020
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-020-2344-3
Schlagwort:
  • Base Sequence
  • DEAD-box RNA Helicases chemistry
  • DEAD-box RNA Helicases metabolism
  • HeLa Cells
  • Humans
  • Models, Molecular
  • Phosphoproteins chemistry
  • Phosphoproteins metabolism
  • Protein Binding
  • Protein Conformation
  • RNA Splicing Factors chemistry
  • RNA Splicing Factors metabolism
  • Ribonucleoprotein, U2 Small Nuclear genetics
  • Ribonucleoprotein, U2 Small Nuclear metabolism
  • Trans-Activators chemistry
  • Trans-Activators metabolism
  • Cryoelectron Microscopy
  • Ribonucleoprotein, U2 Small Nuclear chemistry
  • Ribonucleoprotein, U2 Small Nuclear ultrastructure
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2020 Jul; Vol. 583 (7815), pp. 310-313. <i>Date of Electronic Publication: </i>2020 Jun 03.
  • MeSH Terms: Cryoelectron Microscopy* ; Ribonucleoprotein, U2 Small Nuclear / *chemistry ; Ribonucleoprotein, U2 Small Nuclear / *ultrastructure ; Base Sequence ; DEAD-box RNA Helicases / chemistry ; DEAD-box RNA Helicases / metabolism ; HeLa Cells ; Humans ; Models, Molecular ; Phosphoproteins / chemistry ; Phosphoproteins / metabolism ; Protein Binding ; Protein Conformation ; RNA Splicing Factors / chemistry ; RNA Splicing Factors / metabolism ; Ribonucleoprotein, U2 Small Nuclear / genetics ; Ribonucleoprotein, U2 Small Nuclear / metabolism ; Trans-Activators / chemistry ; Trans-Activators / metabolism
  • References: Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011). (PMID: 21441581311991710.1101/cshperspect.a003707) ; Ruby, S. W., Chang, T. H. & Abelson, J. Four yeast spliceosomal proteins (PRP5, PRP9, PRP11, and PRP21) interact to promote U2 snRNP binding to pre-mRNA. Genes Dev. 7, 1909–1925 (1993). (PMID: 840599810.1101/gad.7.10.1909) ; O’Day, C. L., Dalbadie-McFarland, G. & Abelson, J. The Saccharomyces cerevisiae Prp5 protein has RNA-dependent ATPase activity with specificity for U2 small nuclear RNA. J. Biol. Chem. 271, 33261–33267 (1996). (PMID: 896918410.1074/jbc.271.52.33261) ; Abu Dayyeh, B. K., Quan, T. K., Castro, M. & Ruby, S. W. Probing interactions between the U2 small nuclear ribonucleoprotein and the DEAD-box protein, Prp5. J. Biol. Chem. 277, 20221–20233 (2002). (PMID: 1192757410.1074/jbc.M109553200) ; Perriman, R., Barta, I., Voeltz, G. K., Abelson, J. & Ares, M., Jr. ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. Proc. Natl Acad. Sci. USA 100, 13857–13862 (2003). (PMID: 1461028510.1073/pnas.2036312100283511) ; Will, C. L. et al. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 21, 4978–4988 (2002). (PMID: 1223493712627910.1093/emboj/cdf480) ; Xu, Y. Z. et al. Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNP association with intron RNA. EMBO J. 23, 376–385 (2004). (PMID: 14713954127175710.1038/sj.emboj.7600050) ; Perriman, R. & Ares, M., Jr. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol. Cell 38, 416–427 (2010). (PMID: 20471947287277910.1016/j.molcel.2010.02.036) ; Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012). (PMID: 2312394210.1038/nrd3823) ; Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016). (PMID: 2772064310.1016/j.molcel.2016.08.036) ; Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019). (PMID: 3076541410.1101/cshperspect.a0324176824238) ; Krämer, A., Grüter, P., Gröning, K. & Kastner, B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J. Cell Biol. 145, 1355–1368 (1999). (PMID: 10385517213316510.1083/jcb.145.7.1355) ; Bertram, K. et al. Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170, 701–713.e11 (2017). (PMID: 2878116610.1016/j.cell.2017.07.011) ; Haselbach, D. et al. Structure and conformational dynamics of the human spliceosomal B act complex. Cell 172, 454–464.e11 (2018). (PMID: 2936131610.1016/j.cell.2018.01.010) ; Zhan, X., Yan, C., Zhang, X., Lei, J. & Shi, Y. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Res. 28, 1129–1140 (2018). (PMID: 30315277627464710.1038/s41422-018-0094-7) ; Zhang, X. et al. Structure of the human activated spliceosome in three conformational states. Cell Res. 28, 307–322 (2018). (PMID: 29360106583577310.1038/cr.2018.14) ; Cretu, C. et al. Structural basis of splicing modulation by antitumor macrolide compounds. Mol. Cell 70, 265–273.e8 (2018). (PMID: 2965692310.1016/j.molcel.2018.03.011) ; Plaschka, C., Lin, P. C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017). (PMID: 28530653550313110.1038/nature22799) ; Papasaikas, P. & Valcárcel, J. The spliceosome: The ultimate RNA chaperone and sculptor. Trends Biochem. Sci. 41, 33–45 (2016). (PMID: 2668249810.1016/j.tibs.2015.11.003) ; Agafonov, D. E. et al. Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell. Biol. 31, 2667–2682 (2011). (PMID: 21536652313338210.1128/MCB.05266-11) ; Talkish, J. et al. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. RNA 25, 1020–1037 (2019). (PMID: 31110137663320510.1261/rna.070649.119) ; Xu, Y. Z. & Query, C. C. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol. Cell 28, 838–849 (2007). (PMID: 18082608224609110.1016/j.molcel.2007.09.022) ; Tang, Q. et al. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev. 30, 2710–2723 (2016). (PMID: 28087715523873010.1101/gad.291872.116) ; Shao, W., Kim, H. S., Cao, Y., Xu, Y. Z. & Query, C. C. A. A U1-U2 snRNP interaction network during intron definition. Mol. Cell. Biol. 32, 470–478 (2012). (PMID: 22064476325577610.1128/MCB.06234-11) ; Carrocci, T. J., Zoerner, D. M., Paulson, J. C. & Hoskins, A. A. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res. 45, 4837–4852 (2017). (PMID: 280628545416834) ; Loerch, S. et al. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J. Biol. Chem. 294, 2892–2902 (2019). (PMID: 3056773710.1074/jbc.RA118.006764) ; Crisci, A. et al. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res. 43, 10456–10473 (2015). (PMID: 264208264666396) ; Pan, C. & Russell, R. Roles of DEAD-box proteins in RNA and RNP Folding. RNA Biol. 7, 667–676 (2010). (PMID: 21045543307332610.4161/rna.7.6.13571) ; Liu, Z. et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098–1102 (2001). (PMID: 1169199210.1126/science.1064719) ; Liang, W. W. & Cheng, S. C. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev. 29, 81–93 (2015). (PMID: 25561497428156710.1101/gad.253708.114) ; Agafonov, D. E. et al. Molecular architecture of the human U4/U6. U5 tri-snRNP. Science 351, 1416–1420 (2016). (PMID: 2691236710.1126/science.aad2085) ; Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012). (PMID: 2277272810.1038/nmeth.2099) ; Chen, Z. L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019). (PMID: 31363125666745910.1038/s41467-019-11337-z) ; Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193) ; Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). (PMID: 26592709471134310.1016/j.jsb.2015.11.003) ; Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 10.1038/nmeth.416928165473) ; Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 10.1002/jcc.2008415264254) ; Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). (PMID: 1557276510.1107/S0907444904019158) ; Antczak, M. et al. RNAvista: a webserver to assess RNA secondary structures with non-canonical base pairs. Bioinformatics 35, 152–155 (2019). (PMID: 2998597910.1093/bioinformatics/bty609) ; Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997). (PMID: 950480310.1002/elps.1150181505) ; Korneta, I., Magnus, M. & Bujnicki, J. M. Structural bioinformatics of the human spliceosomal proteome. Nucleic Acids Res. 40, 7046–7065 (2012). (PMID: 22573172342453810.1093/nar/gks347) ; Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). (PMID: 201247022815670) ; Behrens, S. E., Tyc, K., Kastner, B., Reichelt, J. & Lührmann, R. Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Mol. Cell. Biol. 13, 307–319 (1993). (PMID: 8380223358910) ; MacMillan, A. M. et al. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev. 8, 3008–3020 (1994). (PMID: 800182010.1101/gad.8.24.3008) ; Will, C. L. et al. A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J. 20, 4536–4546 (2001). (PMID: 1150038012558010.1093/emboj/20.16.4536) ; Spadaccini, R. et al. Biochemical and NMR analyses of an SF3b155-p14-U2AF-RNA interaction network involved in branch point definition during pre-mRNA splicing. RNA 12, 410–425 (2006). (PMID: 16495236138358010.1261/rna.2271406) ; Plaschka, C., Lin, P. C., Charenton, C. & Nagai, K. Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559, 419–422 (2018). (PMID: 29995849614101210.1038/s41586-018-0323-8) ; Charenton, C., Wilkinson, M. E. & Nagai, K. Mechanism of 5′ splice site transfer for human spliceosome activation. Science 364, 362–367 (2019). (PMID: 30975767652509810.1126/science.aax3289) ; Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015). (PMID: 2656591510.1016/j.celrep.2015.09.053) ; Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016). (PMID: 26842708474300910.1038/ncomms10615) ; Zhang, J. et al. Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol. Cell 76, 82–95.e7 (2019). (PMID: 31474574706527310.1016/j.molcel.2019.07.017) ; Kielkopf, C. L., Lücke, S. & Green, M. R. U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 18, 1513–1526 (2004). (PMID: 1523173310.1101/gad.1206204)
  • Substance Nomenclature: 0 (HTATSF1 protein, human) ; 0 (Phosphoproteins) ; 0 (RNA Splicing Factors) ; 0 (Ribonucleoprotein, U2 Small Nuclear) ; 0 (SF3B1 protein, human) ; 0 (Trans-Activators) ; EC 3.6.1.- (DDX46 protein, human) ; EC 3.6.4.13 (DEAD-box RNA Helicases)
  • Entry Date(s): Date Created: 20200605 Date Completed: 20200810 Latest Revision: 20220418
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -