Zum Hauptinhalt springen

Pleiotropic genomic variants at 17q21.31 associated with bone mineral density and body fat mass: a bivariate genome-wide association analysis.

Wei, XT ; Feng, GJ ; et al.
In: European journal of human genetics : EJHG, Jg. 29 (2021-04-01), Heft 4, S. 553-563
Online academicJournal

Titel:
Pleiotropic genomic variants at 17q21.31 associated with bone mineral density and body fat mass: a bivariate genome-wide association analysis.
Autor/in / Beteiligte Person: Wei, XT ; Feng, GJ ; Zhang, H ; Xu, Q ; Ni, JJ ; Zhao, M ; Yang, XL ; Tian, Q ; Shen, H ; Hai, R ; Deng, HW ; Zhang, L ; Pei, YF
Link:
Zeitschrift: European journal of human genetics : EJHG, Jg. 29 (2021-04-01), Heft 4, S. 553-563
Veröffentlichung: <2003->: London : Nature Publishing Group ; <i>Original Publication</i>: Basel ; New York : Karger, [1992-, 2021
Medientyp: academicJournal
ISSN: 1476-5438 (electronic)
DOI: 10.1038/s41431-020-00727-3
Schlagwort:
  • Aged
  • Bone Density genetics
  • Complement C1q genetics
  • DNA Repair Enzymes genetics
  • Female
  • Humans
  • Kinesins genetics
  • Middle Aged
  • Nuclear Proteins genetics
  • RNA Splicing Factors genetics
  • Chromosomes, Human, Pair 17 genetics
  • Genetic Pleiotropy
  • Obesity genetics
  • Osteoporosis genetics
  • Polymorphism, Single Nucleotide
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Eur J Hum Genet] 2021 Apr; Vol. 29 (4), pp. 553-563. <i>Date of Electronic Publication: </i>2020 Sep 22.
  • MeSH Terms: Genetic Pleiotropy* ; Polymorphism, Single Nucleotide* ; Chromosomes, Human, Pair 17 / *genetics ; Obesity / *genetics ; Osteoporosis / *genetics ; Aged ; Bone Density / genetics ; Complement C1q / genetics ; DNA Repair Enzymes / genetics ; Female ; Humans ; Kinesins / genetics ; Middle Aged ; Nuclear Proteins / genetics ; RNA Splicing Factors / genetics
  • References: Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81. (PMID: 24880830462426410.1016/S0140-6736(14)60460-8) ; Venniyoor A. The most important questions in cancer research and clinical oncology-Question 2-5. Obesity-related cancers: more questions than answers. Chin J Cancer. 2017;36:18. (PMID: 28143590528681810.1186/s40880-017-0185-8) ; Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288:1723–7. (PMID: 1236595510.1001/jama.288.14.1723) ; Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res. 1998;6:97–106. (PMID: 954501510.1002/j.1550-8528.1998.tb00322.x) ; Elder SJ, Roberts SB, McCrory MA, Das SK, Fuss PJ, Pittas AG, et al. Effect of body composition methodology on heritability estimation of body fatness. Open Nutr J. 2012;6:48–58. (PMID: 25067962411098010.2174/1874288201206010048) ; Ramirez-Salazar EG, Carrillo-Patino S, Hidalgo-Bravo A, Rivera-Paredez B, Quiterio M, Ramirez-Palacios P, et al. Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene. 2018;679:19–27. (PMID: 3017193810.1016/j.gene.2018.08.074) ; Lampropoulos CE, Papaioannou I, D’Cruz DP. Osteoporosis-a risk factor for cardiovascular disease? Nat Rev Rheumatol. 2012;8:587–98. (PMID: 2289024410.1038/nrrheum.2012.120) ; Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev. 2002;23:303–26. (PMID: 1205012210.1210/edrv.23.3.0464) ; Kokabu S, Lowery JW, Jimi E. Cell fate and differentiation of bone marrow mesenchymal stem cells. Stem Cells Int. 2016;2016:3753581. (PMID: 27298623488985210.1155/2016/3753581) ; Magni P, Dozio E, Galliera E, Ruscica M, Corsi MM. Molecular aspects of adipokine-bone interactions. Curr Mol Med. 2010;10:522–32. (PMID: 20642443) ; Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99:30–8. (PMID: 2438401310.1210/jc.2013-3190) ; Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7:10495. (PMID: 26833246474039810.1038/ncomms10495) ; Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9. (PMID: 30124842648897310.1093/hmg/ddy271) ; Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51:258–66. (PMID: 3059854910.1038/s41588-018-0302-x) ; Liu YZ, Pei YF, Liu JF, Yang F, Guo Y, Zhang L, et al. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS ONE. 2009;4:e6827. (PMID: 19714249273001410.1371/journal.pone.0006827) ; Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, et al. NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 2014;42:D975–9. (PMID: 2429725610.1093/nar/gkt1211) ; Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014;23:1923–33. (PMID: 2424974010.1093/hmg/ddt575) ; Pei YF, Hu WZ, Yan MW, Li CW, Liu L, Yang XL, et al. Joint study of two genome-wide association meta-analyses identified 20p12.1 and 20q13.33 for bone mineral density. Bone. 2018;110:378–85. (PMID: 29499414632930810.1016/j.bone.2018.02.027) ; Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383:999–1008. (PMID: 2408429210.1016/S0140-6736(13)61752-3) ; Design of the Women’s Health Initiative clinical trial and observational study. The Women’s Health Initiative Study Group. Control Clin Trials. 1998;19:61–109. ; Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44:491–501. (PMID: 22504420333886410.1038/ng.2249) ; Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9. (PMID: 1686216110.1038/ng1847) ; Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. (PMID: 17701901195083810.1086/519795) ; Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. (PMID: 10.1038/nature11632) ; Zhang L, Pei YF, Fu X, Lin Y, Wang YP, Deng HW. FISH: fast and accurate diploid genotype imputation via segmental hidden Markov model. Bioinformatics. 2014;30:1876–83. (PMID: 24618466407120910.1093/bioinformatics/btu143) ; Zhang L, Li J, Pei YF, Liu Y, Deng HW. Tests of association for quantitative traits in nuclear families using principal components to correct for population stratification. Ann Hum Genet. 2009;73:601–13. (PMID: 19702646276480610.1111/j.1469-1809.2009.00539.x) ; Zhang L, Pei YF, Li J, Papasian CJ, Deng HW. Univariate/multivariate genome-wide association scans using data from families and unrelated samples. PLoS ONE. 2009;4:e6502. (PMID: 19652719271586410.1371/journal.pone.0006502) ; Konstantopoulos S. Fixed and mixed effects models in meta-analysis. IZA Discussion Paper No. 2198. 2006. ; Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51:1459–74. (PMID: 31578528685855510.1038/s41588-019-0504-x) ; Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202–7. (PMID: 1787387710.1038/ng2109) ; Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. (PMID: 25826379438046510.1371/journal.pmed.1001779) ; Graafmans WC, Van Lingen A, Ooms ME, Bezemer PD, Lips P. Ultrasound measurements in the calcaneus: precision and its relation with bone mineral density of the heel, hip, and lumbar spine. Bone. 1996;19:97–100. (PMID: 885385110.1016/8756-3282(96)00134-2) ; Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016;44:D877–81. (PMID: 2665763110.1093/nar/gkv1340) ; Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. (PMID: 2535255310.1093/nar/gku1003) ; Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358:2355–65. (PMID: 1844577710.1056/NEJMoa0801197) ; Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104:65–75. (PMID: 3059537010.1016/j.ajhg.2018.11.008) ; Mucientes A, Herranz E, Moro E, Lajas C, Candelas G, Fernandez-Gutierrez B, et al. Differential expression of HOX genes in mesenchymal stem cells from osteoarthritic patients is independent of their promoter methylation. Cells. 2018;7:244. (PMID: 631658510.3390/cells7120244) ; Watts KL, Delaney C, Humphries RK, Bernstein ID, Kiem HP. Combination of HOXB4 and Delta-1 ligand improves expansion of cord blood cells. Blood. 2010;116:5859–66. (PMID: 20921340303138210.1182/blood-2010-05-286062) ; Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11. (PMID: 24037378391845310.1038/nature12531) ; Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–43. (PMID: 24013639399156210.1038/ng.2756) ; Kawashima T, Hirose K, Satoh T, Kaneko A, Ikeda Y, Kaziro Y, et al. MgcRacGAP is involved in the control of growth and differentiation of hematopoietic cells. Blood. 2000;96:2116–24. (PMID: 1097995610.1182/blood.V96.6.2116) ; Cho SY, Shin ES, Park PJ, Shin DW, Chang HK, Kim D, et al. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem. 2007;282:2456–65. (PMID: 1711893610.1074/jbc.M608042200) ; Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC, et al. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. 2016;21:108–17. (PMID: 2577847610.1038/mp.2015.23) ; Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017;551:92–4. (PMID: 29059683579858810.1038/nature24284) ; International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9. (PMID: 10.1038/nature10251) ; Kim SK. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE. 2018;13:e0200785. (PMID: 30048462606201910.1371/journal.pone.0200785) ; Schumaker VN, Zavodszky P, Poon PH. Activation of the first component of complement. Annu Rev Immunol. 1987;5:21–42. (PMID: 303618110.1146/annurev.iy.05.040187.000321) ; Teo BH, Bobryshev YV, Teh BK, Wong SH, Lu J. Complement C1q production by osteoclasts and its regulation of osteoclast development. Biochem J. 2012;447:229–37. (PMID: 2281263510.1042/BJ20120888) ; Wei Z, Lei X, Petersen PS, Aja S, Wong GW. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice. Am J Physiol Endocrinol Metab. 2014;306:E779–90. (PMID: 24473438396261510.1152/ajpendo.00593.2013) ; Desert C, Baeza E, Aite M, Boutin M, Le Cam A, Montfort J, et al. Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis. BMC Genomics. 2018;19:187. (PMID: 29514634584252410.1186/s12864-018-4520-5) ; Sen R, Pezoa SA, Carpio Shull L, Hernandez-Lagunas L, Niswander LA, Artinger KB. Kat2a and Kat2b acetyltransferase activity regulates craniofacial cartilage and bone differentiation in zebrafish and mice. J Dev Biol. 2018;6:27. (PMID: 631554510.3390/jdb6040027) ; Pei YF, Liu L, Liu TL, Yang XL, Zhang H, Wei XT, et al. Joint association analysis identified 18 new loci for bone mineral density. J Bone Min Res. 2019;34:1086–94. (PMID: 10.1002/jbmr.3681)
  • Grant Information: R01 AG061917 United States AG NIA NIH HHS; R01 AR059781 United States AR NIAMS NIH HHS; MC_QA137853 United Kingdom MRC_ Medical Research Council; R01 AR069055 United States AR NIAMS NIH HHS; P01 AG018397 United States AG NIA NIH HHS; P20 GM109036 United States GM NIGMS NIH HHS; R01 MH104680 United States MH NIMH NIH HHS; N01HC25195 United States HL NHLBI NIH HHS; MC_PC_17228 United Kingdom MRC_ Medical Research Council; N01WH22110 United States WH WHI NIH HHS; N02HL64278 United States HL NHLBI NIH HHS; R01 AR041398 United States AR NIAMS NIH HHS; U19 AG055373 United States AG NIA NIH HHS
  • Substance Nomenclature: 0 (C1QL1 protein, human) ; 0 (Nuclear Proteins) ; 0 (RNA Splicing Factors) ; 80295-33-6 (Complement C1q) ; EC 3.6.1.- (KIF18B protein, human) ; EC 3.6.4.4 (Kinesins) ; EC 6.5.1.- (DNA Repair Enzymes) ; EC 6.5.1.- (PRPF19 protein, human)
  • Entry Date(s): Date Created: 20200923 Date Completed: 20220114 Latest Revision: 20220422
  • Update Code: 20231215
  • PubMed Central ID: PMC8115667

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -