Zum Hauptinhalt springen

NDV-D90 inhibits 17β-estradiol-mediated resistance to apoptosis by differentially modulating classic and nonclassic estrogen receptors in breast cancer cells.

Shan, P ; Tang, B ; et al.
In: Journal of cellular biochemistry, Jg. 122 (2021), Heft 1, S. 3-15
Online academicJournal

Titel:
NDV-D90 inhibits 17β-estradiol-mediated resistance to apoptosis by differentially modulating classic and nonclassic estrogen receptors in breast cancer cells.
Autor/in / Beteiligte Person: Shan, P ; Tang, B ; Xie, S ; Zhang, Z ; Fan, J ; Wei, Z ; Song, C
Link:
Zeitschrift: Journal of cellular biochemistry, Jg. 122 (2021), Heft 1, S. 3-15
Veröffentlichung: <2004>- : Hoboken, NJ : Wiley-Liss ; <i>Original Publication</i>: New York : Liss, c1982-, 2021
Medientyp: academicJournal
ISSN: 1097-4644 (electronic)
DOI: 10.1002/jcb.28118
Schlagwort:
  • Animals
  • Breast Neoplasms metabolism
  • Breast Neoplasms therapy
  • Cell Proliferation
  • Estrogens pharmacology
  • Female
  • Humans
  • Mice
  • Mice, Nude
  • Receptors, Estrogen genetics
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays
  • Apoptosis
  • Breast Neoplasms pathology
  • Estradiol pharmacology
  • Gene Expression Regulation, Neoplastic
  • Newcastle disease virus growth & development
  • Oncolytic Virotherapy methods
  • Receptors, Estrogen metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Cell Biochem] 2021 Jan; Vol. 122 (1), pp. 3-15. <i>Date of Electronic Publication: </i>2020 Sep 28.
  • MeSH Terms: Apoptosis* ; Gene Expression Regulation, Neoplastic* ; Breast Neoplasms / *pathology ; Estradiol / *pharmacology ; Newcastle disease virus / *growth & development ; Oncolytic Virotherapy / *methods ; Receptors, Estrogen / *metabolism ; Animals ; Breast Neoplasms / metabolism ; Breast Neoplasms / therapy ; Cell Proliferation ; Estrogens / pharmacology ; Female ; Humans ; Mice ; Mice, Nude ; Receptors, Estrogen / genetics ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays
  • References: International Agency for Research on Cancer (2013). International Agency for Research on Cancer. Available at: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr223_E.pdf (accessed December 12, 2013). ; Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889-895. ; Beato M, Arnemann J, Chalepakis G, Slater E, Willmann T. Gene regulation by steroid hormones. J Steroid Biochem. 1987;27(1-3):9-14. ; Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim). 2009;342(3):133-149. ; Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer. 2014;14(1):26-38. ; Feldman RD, Limbird LE. GPER (GPR30): a nongenomic receptor (GPCR) for steroid hormones with implications for cardiovascular disease and cancer. Annu Rev Pharmacol Toxicol. 2017;57:567-584. ; Cheng X, Wang W, Xu Q, et al. Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol. 2016;90(11):5343-5352. ; Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 2012;7(3):347-367. ; Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther. 2015;15(12):1757-1771. ; Bai FL, Yu YH, Tian H, et al. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol Ther. 2014;15(9):1226-1238. ; Koks CA, Garg AD, Ehrhardt M, et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer. 2015;136(5):E313-E325. ; Meng G, Xia M, Wang D, et al. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget. 2014;5(15):6365-6374. ; Bu X, Zhao Y, Zhang Z, Wang M, Li M, Yan Y. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress. Am J Cancer Res. 2016;6(5):924-936. ; Csatary LK, Gosztonyi G, Szeberenyi J, et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol. 2004;67(1-2):83-93. ; Freeman AI, Zakay-Rones Z, Gomori JM, et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther. 2006;13(1):221-228. ; Lorence RM, Roberts MS, O'Neil JD, et al. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets. 2007;7(2):157-167. ; Hotte SJ, Lorence RM, Hirte HW, et al. An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res. 2007;13(3):977-985. ; Chai Z, Zhang P, Fu F, et al. Oncolytic therapy of a recombinant Newcastle disease virus D90 strain for lung cancer. Virol J. 2014;11:84. ; Zhang CX, Ye LW, Liu Y, et al. Antineoplastic activity of Newcastle disease virus strain D90 in oral squamous cell carcinoma. Tumour Biol. 2015;36(9):7121-7131. ; Lin W, Huang J, Liao X, et al. Neo-tanshinlactone selectively inhibits the proliferation of estrogen receptor positive breast cancer cells through transcriptional down-regulation of estrogen receptor alpha. Pharmacol Res. 2016;111:849-858. ; Shen P, Chen M, He M, et al. Inhibition of ERα/ERK/P62 cascades induces “autophagic switch” in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7(30):48501-48516. ; Stender JD, Nwachukwu JC, Kastrati I, et al. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell. 2017;65(6):1122-1135. ; Girgert R, Emons G, Gründker C. 17β-estradiol-induced growth of triple-negative breast cancer cells is prevented by the reduction of GPER expression after treatment with gefitinib. Oncol Rep. 2017;37(2):1212-1218. ; Yu T, Liu M, Luo H, et al. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J Steroid Biochem Mol Biol. 2014;143:392-403. ; Fu F, Zhao M, Yang YJ, et al. Antiproliferative effect of Newcastle disease virus strain D90 on human lung cancer cell line A549. Oncol Res. 2011;19(7):323-333. ; Wei Z, Jiang X, Qiao H, et al. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal. 2013;25(4):931-938. ; Wei Z, Jiang X, Liu F, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 2013;34(1):181-192. ; Ariazi EA, Brailoiu E, Yerrum S, et al. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res. 2010;70(3):1184-1194. ; Zhou X, Wang S, Wang Z, et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest. 2015;125(5):2123-2135. ; Mao C, Livezey M, Kim JE, Shapiro DJ. Antiestrogen resistant cell lines expressing estrogen receptor α mutations upregulate the unfolded protein response and are killed by BHPI. Sci Rep. 2016;6:34753. ; MR Bratton, Duong BN, Elliott S, et al. Regulation of ER alpha-mediated transcription of Bcl-2 by PI3K-AKT crosstalk: implications for breast cancer cell survival. Int J Oncol. 2010;37(3):541-550. ; To SQ, Cheung V, Lazarus KA, Knower KC, Clyne CD. Estradiol regulates tumor necrosis factor-α expression and secretion in estrogen receptor positive breast cancer cells. Mol Cell Endocrinol. 2014;394(1-2):21-28. ; Won YS, Lee JH, Kwon SJ, et al. α-Mangostin-induced apoptosis is mediated by estrogen receptor α in human breast cancer cells. Food Chem Toxicol. 2014;66:158-165. ; Pedram A, Razandi M, Wallace DC, Levin ER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell. 2006;17(5):2125-2137. ; Wróbel AM, Gregoraszczuk EŁ. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett. 2015;238(2):110-116. ; Chen Y, Li Z, He Y, et al. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell-matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis. Toxicol Appl Pharmacol. 2014;275(2):176-181. ; Rahman M, Pumphrey JG, Lipkowitz S. The TRAIL to targeted therapy of breast cancer. Adv Cancer Res. 2009;103:43-73. ; Yoon N, Park MS, Shigemoto T, Peltier G, Lee RH. Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β. Cell Death Dis. 2016;7:e2191. ; Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci. 2004;29(9):486-494. ; Wang S, Bai L, Lu J, Liu L, Yang CY, Sun H. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics. J Mammary Gland Biol Neoplasia. 2012;17(3-4):217-228. ; Stanculescu A, Bembinster LA, Borgen K, Bergamaschi A, Wiley E, Frasor J. Estrogen promotes breast cancer cell survival in an inhibitor of apoptosis (IAP)-dependent manner. Horm Cancer. 2010;1(3):127-135. ; Elankumaran S, Rockemann D, Samal SK. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol. 2006;80(15):7522-7534. ; Girgert R, Emons G, Gründker C. Inhibition of GPR30 by estriol prevents growth stimulation of triple-negative breast cancer cells by 17β-estradiol. BMC Cancer. 2014;14:935. ; Girgert R, Emons G1, Gründker C. Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat. 2012;134(1):199-205. ; Santolla MF, Avino S, Pellegrino M, et al. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis. 2015;6:e1834. ; Tao S, He H, Chen Q. Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer. J Transl Med. 2015;13:131. ; Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-632. ; Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22(7):1071-1080. ; Molouki A, Hsu YT, Jahanshiri F, Abdullah S, Rosli R, Yusoff K. The matrix (M) protein of Newcastle disease virus binds to human bax through its BH3 domain. Virol J. 2011;8:385.
  • Contributed Indexing: Keywords: G protein estrogen receptor (GPER); Newcastle disease virus-D90 (NDV-D90); apoptosis; breast cancer (BC); estrogen receptor-alpha
  • Substance Nomenclature: 0 (Estrogens) ; 0 (Receptors, Estrogen) ; 4TI98Z838E (Estradiol)
  • Entry Date(s): Date Created: 20200928 Date Completed: 20210727 Latest Revision: 20210727
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -