Zum Hauptinhalt springen

Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways.

Correa, LB ; Seito, LN ; et al.
In: Inflammation research : official journal of the European Histamine Research Society ... [et al.], Jg. 69 (2020-12-01), Heft 12, S. 1257-1270
Online academicJournal

Titel:
Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways.
Autor/in / Beteiligte Person: Correa, LB ; Seito, LN ; Manchope, MF ; Verri WA Jr ; Cunha, TM ; Henriques, MG ; Rosas, EC
Link:
Zeitschrift: Inflammation research : official journal of the European Histamine Research Society ... [et al.], Jg. 69 (2020-12-01), Heft 12, S. 1257-1270
Veröffentlichung: Basel, Switzerland : Birkhäuser, c1995-, 2020
Medientyp: academicJournal
ISSN: 1420-908X (electronic)
DOI: 10.1007/s00011-020-01407-0
Schlagwort:
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal therapeutic use
  • Cytokines metabolism
  • Edema chemically induced
  • Edema drug therapy
  • Gallic Acid pharmacology
  • Gallic Acid therapeutic use
  • Hyperalgesia drug therapy
  • Male
  • Mice
  • RAW 264.7 Cells
  • Zymosan
  • Anti-Inflammatory Agents, Non-Steroidal pharmacology
  • Gallic Acid analogs & derivatives
  • Inflammation drug therapy
  • Mitogen-Activated Protein Kinases antagonists & inhibitors
  • NF-kappa B antagonists & inhibitors
  • Signal Transduction drug effects
  • Toll-Like Receptors drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Inflamm Res] 2020 Dec; Vol. 69 (12), pp. 1257-1270. <i>Date of Electronic Publication: </i>2020 Oct 09.
  • MeSH Terms: Anti-Inflammatory Agents, Non-Steroidal / *pharmacology ; Gallic Acid / *analogs & derivatives ; Inflammation / *drug therapy ; Mitogen-Activated Protein Kinases / *antagonists & inhibitors ; NF-kappa B / *antagonists & inhibitors ; Signal Transduction / *drug effects ; Toll-Like Receptors / *drug effects ; Animals ; Anti-Inflammatory Agents, Non-Steroidal / therapeutic use ; Cytokines / metabolism ; Edema / chemically induced ; Edema / drug therapy ; Gallic Acid / pharmacology ; Gallic Acid / therapeutic use ; Hyperalgesia / drug therapy ; Male ; Mice ; RAW 264.7 Cells ; Zymosan
  • References: Sharma N, et al. Inflammation and joint destruction may be linked to the generation of cartilage metabolites of ADAMTS-5 through activation of toll-like receptors. Osteoarthr Cartil. 2019. https://doi.org/10.1016/j.joca.2019.11.002 . (PMID: 10.1016/j.joca.2019.11.0026536333) ; Agalave NM, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain. 2014;155(9):1802–13. (PMID: 24954167) ; Christianson CA, et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain. 2011;152(12):2881–91. (PMID: 220191353347973) ; Calil IL, et al. Lipopolysaccharide induces inflammatory hyperalgesia triggering a TLR4/MyD88-dependent cytokine cascade in the mice paw. PLoS ONE. 2014;9(3):e90013. (PMID: 245951313940714) ; Yahfoufi N, et al. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. (PMID: 6266803) ; Rahimifard M, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–9. (PMID: 28235660) ; Molteni M, Bosi A, Rossetti C. Natural products with Toll-like receptor 4 antagonist activity. Int J Inflam. 2018;2018:2859135. (PMID: 296868335852877) ; Azam S, et al. Regulation of Toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10:1000. (PMID: 311340766522942) ; Cho EJ, et al. Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am J Chin Med. 2004;32(4):487–96. (PMID: 15481639) ; Kang MS, et al. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum. J Microbiol. 2009;47(6):760–7. (PMID: 20127471) ; Rosas EC, et al. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol. 2015. https://doi.org/10.1016/j.jep.2015.10.014 . (PMID: 10.1016/j.jep.2015.10.01426453933) ; Kamatham S, Kumar N, Gudipalli P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of. Toxicol Rep. 2015;2:520–9. (PMID: 289623875598244) ; Sharanya CS, et al. Designing of enzyme inhibitors based on active site specificity: lessons from methyl gallate and its lipoxygenase inhibitory profile. J Recept Signal Transduct Res. 2018;38(3):256–65. ; Acharyya S, et al. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol. 2015;64(8):901–9. (PMID: 26272388) ; Park DJ, et al. Root bark of Paeonia suffruticosa extract and its component methyl gallate possess peroxynitrite scavenging activity and anti-inflammatory properties through NF-κB Inhibition in LPS-treated mice. Molecules. 2019;24(19):3483. (PMID: 6804175) ; Whang WK, et al. Methyl gallate and chemicals structurally related to methyl gallate protect human umbilical vein endothelial cells from oxidative stress. Exp Mol Med. 2005;37(4):343–52. (PMID: 16155411) ; Crispo JA, et al. Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun. 2010;393(4):773–8. (PMID: 20171161) ; Lee H, et al. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J Immunol. 2010;185(11):6698–705. (PMID: 21048105) ; Lee SH, et al. Antitumor activity of methyl gallate by inhibition of focal adhesion formation and Akt phosphorylation in glioma cells. Biochim Biophys Acta. 2013;1830(8):4017–29. (PMID: 23562553) ; Choi JG, et al. Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules. 2009;14(5):1773–800. (PMID: 19471197) ; Correa LB, et al. Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J Nat Prod. 2016;79(6):1554–666. (PMID: 27227459) ; Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16(2):109–10. (PMID: 6877845) ; Corrêa CR, Calixto JB. Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol. 1993;110(1):193–8. (PMID: 8220879) ; Bradley PP, Christensen RD, Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982;60(3):618–22. (PMID: 6286012) ; Cunha TM, et al. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res. 2004;37(3):401–7. (PMID: 15060710) ; Lavich TR, et al. A novel hot-plate test sensitive to hyperalgesic stimuli and non-opioid analgesics. Braz J Med Biol Res. 2005;38(3):445–51. (PMID: 15761625) ; Hohmann MS, et al. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. Biomed Res Int. 2013;2013:627046. (PMID: 242886823832964) ; Guedes RP, et al. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res. 2006;31(5):603–9. (PMID: 16770731) ; McLeish KR, Wellhausen SR, Stelzer GT. Mechanism of prostaglandin E2 inhibition of acute changes in vascular permeability. Inflammation. 1987;11(3):279–88. (PMID: 2820877) ; Cuzzocrea S, et al. Zymosan-activated plasma induces paw oedema by nitric oxide and prostaglandin production. Life Sci. 1997;60(3):215–20. (PMID: 9000646) ; Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res. 2003;9(3):176–80. (PMID: 12831459) ; Suo J, et al. Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol. 2014;96(1):133–42. (PMID: 24555986) ; Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal. 2009;11(9):2209–22. (PMID: 19203223) ; Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616–9. (PMID: 20201014) ; Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: role in disease and pharmacological perspectives. Pharmacol Res. 2016;112:84–988. (PMID: 26826283) ; Grace PM, et al. Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci. 2016;39(12):862–79. (PMID: 278429205148691) ; Bélichard P, et al. Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat: effect of kinin receptor antagonists. Immunopharmacology. 2000;46(2):139–47. (PMID: 10647872) ; Guerrero AT, et al. The role of PAF/PAFR signaling in zymosan-induced articular inflammatory hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(1):51–9. (PMID: 23187752) ; Gantner BN, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197(9):1107–17. (PMID: 127194792193968) ; Lamkanfi M, Malireddi RK, Kanneganti TD. Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem. 2009;284(31):20574–81. (PMID: 195092802742822) ; Bauernfeind FG, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91. (PMID: 195708222824855) ; Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072(2–3):129–57. (PMID: 1751545) ; Choi JG, et al. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS ONE. 2014;9(7):e102697. (PMID: 250483624105534) ; Cavalher-Machado SC, et al. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int Immunopharmacol. 2008;8(11):1552–600. (PMID: 18672096) ; Hsieh TJ, et al. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells. Food Chem Toxicol. 2004;42(5):843–50. (PMID: 15046831) ; Kim SJ, et al. Effects of methyl gallate on arachidonic acid metabolizing enzymes: cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharm Res. 2006;29(10):874–8. (PMID: 17121182) ; Anzoise ML, et al. Potential usefulness of methyl gallate in the treatment of experimental colitis. Inflammopharmacology. 2018;26(3):839–49. (PMID: 29116460) ; Martins MA, et al. Pharmacological modulation of Paf-induced rat pleurisy and its role in inflammation by zymosan. Br J Pharmacol. 1989;96(2):363–71. (PMID: 29240831854341) ; Tarayre JP, et al. Pharmacological studies on zymosan inflammation in rats and mice. 1: Zymosan-induced paw oedema in rats and mice. Pharmacol Res. 1989;21(4):375–84. (PMID: 2771856) ; Yuhki K, et al. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. J Pharmacol Exp Ther. 2008;325(2):601–9. (PMID: 18256172) ; Stefanova Z, et al. Effect of a total extract from Fraxinus ornus stem bark and esculin on zymosan- and carrageenan-induced paw oedema in mice. J Ethnopharmacol. 1995;46(2):101–6. (PMID: 7650947) ; Penido C, et al. Anti-inflammatory and anti-ulcerogenic properties of Stachytarpheta cayennensis (L.C. Rich) Vahl. J Ethnopharmacol. 2006;104(1–2):225–33. (PMID: 16219439) ; Manchope MF, et al. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS ONE. 2016;11(4):e0153015. (PMID: 270453674821586) ; Cho EJ, et al. Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine. 2003;10(6–7):544–51. (PMID: 13678241) ; Cunha TM, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102(5):1755–60. (PMID: 15665080) ; Verri WA, et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112(1):116–38. (PMID: 16730375) ; Boettger MK, et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 2008;58(8):2368–78. (PMID: 18668541) ; Inglis JJ, et al. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther. 2005;7(4):R807–R816816. (PMID: 159874821175031) ; Hess A, et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci USA. 2011;108(9):3731–6. (PMID: 21245297) ; Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470. (PMID: 256065974289196) ; Chae HS, et al. Methyl gallate inhibits the production of interleukin-6 and nitric oxide via down-regulation of extracellular-signal regulated protein kinase in RAW 264.7 cells. Am J Chin Med. 2010;38(5):973–83. (PMID: 20821827) ; Abreu LS, et al. Antinociceptive compounds and LC-DAD-ESIMSn profile from Dictyoloma vandellianum leaves. PLoS ONE. 2019;14(10):e0224575. (PMID: 316615236818767) ; Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. (PMID: 20404851) ; Ospelt C, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 2008;58(12):3684–92. (PMID: 19035519) ; Arleevskaya MI, et al. Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. 2019. https://doi.org/10.1007/s12016-019-08742-z . (PMID: 10.1007/s12016-019-08742-z) ; Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62. (PMID: 18267068) ; Dhanasekar C, Rasool M. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators. Eur J Pharmacol. 2016;786:116–27. (PMID: 27268719) ; Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38. (PMID: 18613828) ; Mariathasan S, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32. (PMID: 16407890) ; Domiciano TP, et al. Quercetin inhibits inflammasome activation by interfering with ASC oligomerization and prevents interleukin-1 mediated mouse vasculitis. Sci Rep. 2017;7:41539. (PMID: 281489625288648) ; Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–224. (PMID: 15371334) ; Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–92. (PMID: 23954936) ; Xagorari A, Roussos C, Papapetropoulos A. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol. 2002;136(7):1058–64. (PMID: 121451061573431) ; Yang G, et al. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J Agric Food Chem. 2018;66(49):12953–60. (PMID: 30511573) ; Chen CC, et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol Pharmacol. 2004;66(3):683–93. (PMID: 15322261) ; Guo C, et al. Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 Cells. Cell Physiol Biochem. 2017;43(4):1547–61. (PMID: 29035884) ; Wang R, et al. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol. 2017;47:126–33. (PMID: 28391159) ; Silvers AL, Bachelor MA, Bowden GT. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia. 2003;5(4):319–29. (PMID: 145114031502419) ; Giri RS, et al. Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kappaB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur J Med Chem. 2009;44(5):2184–9. (PMID: 19064304) ; Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9. (PMID: 18029230)
  • Grant Information: E-26/202.887/2018 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; 313443/2018-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 1531 Fundação Oswaldo Cruz
  • Contributed Indexing: Keywords: Hyperalgesia; MAPKs quinases; Methyl gallate; NF-κB signaling; Polyphenols; Tlrs
  • Substance Nomenclature: 0 (Anti-Inflammatory Agents, Non-Steroidal) ; 0 (Cytokines) ; 0 (NF-kappa B) ; 0 (Toll-Like Receptors) ; 623D3XG80C (methyl gallate) ; 632XD903SP (Gallic Acid) ; 9010-72-4 (Zymosan) ; EC 2.7.11.24 (Mitogen-Activated Protein Kinases)
  • Entry Date(s): Date Created: 20201010 Date Completed: 20201130 Latest Revision: 20201217
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -