Zum Hauptinhalt springen

Decoding of facial strains via conformable piezoelectric interfaces.

Sun, T ; Tasnim, F ; et al.
In: Nature biomedical engineering, Jg. 4 (2020-10-01), Heft 10, S. 954-972
academicJournal

Titel:
Decoding of facial strains via conformable piezoelectric interfaces.
Autor/in / Beteiligte Person: Sun, T ; Tasnim, F ; McIntosh, RT ; Amiri, N ; Solav, D ; Anbarani, MT ; Sadat, D ; Zhang, L ; Gu, Y ; Karami, MA ; Dagdeviren, C
Zeitschrift: Nature biomedical engineering, Jg. 4 (2020-10-01), Heft 10, S. 954-972
Veröffentlichung: London : Springer Nature ; <i>Original Publication</i>: [London] : Macmillan Publishers Limited, [2016]-, 2020
Medientyp: academicJournal
ISSN: 2157-846X (electronic)
DOI: 10.1038/s41551-020-00612-w
Schlagwort:
  • Amyotrophic Lateral Sclerosis physiopathology
  • Dimethylpolysiloxanes
  • Elastic Modulus
  • Equipment Design
  • Humans
  • Models, Biological
  • Monitoring, Physiologic methods
  • Reproducibility of Results
  • Smiling
  • Algorithms
  • Face
  • Monitoring, Physiologic instrumentation
  • Skin pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Video-Audio Media
  • Language: English
  • [Nat Biomed Eng] 2020 Oct; Vol. 4 (10), pp. 954-972. <i>Date of Electronic Publication: </i>2020 Oct 22.
  • MeSH Terms: Algorithms* ; Face* ; Monitoring, Physiologic / *instrumentation ; Skin / *pathology ; Amyotrophic Lateral Sclerosis / physiopathology ; Dimethylpolysiloxanes ; Elastic Modulus ; Equipment Design ; Humans ; Models, Biological ; Monitoring, Physiologic / methods ; Reproducibility of Results ; Smiling
  • Comments: Comment in: Nat Biomed Eng. 2020 Oct;4(10):935-936. (PMID: 33093666)
  • References: Asheber, W. T., Lin, C.-Y. & Yen, S. H. Humanoid head face mechanism with expandable facial expressions. Int. J. Adv. Robot. Syst. 13, 29 (2016). (PMID: 10.5772/62181) ; Blow, M., Dautenhahn, K., Appleby, A., Nehaniv, C. L. & Lee, D. The art of designing robot faces: dimensions for human–robot interaction. In Proc. 1st ACM SIGCHI/SIGART Conference on Human–Robot Interaction Vol. 6 (Eds Goodrich, M. A. et al.) 331–332 (Association for Computing Machinery, 2006). ; Yagi, M. Mathematical modeling of aging effects in adulthood on the basis of smiling motions with skin mechanical properties. In Proc. 2013 4th International Conference on Intelligent Systems, Modelling and Simulation (Eds Al-Dabass, D. et al.) 182–185 (Institute of Electrical and Electronics Engineers, 2013). ; Shaw, P. J. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J. Neurol. Neurosurg. Psychiatry 76, 1046–1057 (2005). (PMID: 16024877173975810.1136/jnnp.2004.048652) ; GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 1083–1097 (2018). ; Rong, P. et al. Predicting speech intelligibility decline in amyotrophic lateral sclerosis based on the deterioration of individual speech subsystems. PLoS ONE 11, e0154971 (2016). (PMID: 27148967485818110.1371/journal.pone.0154971) ; Bandini, A. et al. Automatic detection of amyotrophic lateral sclerosis (ALS) from video-based analysis of facial movements: speech and non-speech tasks. In Proc. 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018) (Eds Bhanu, B. et al.) 150–157 (Institute of Electrical and Electronics Engineers, 2018). ; Kapur, A., Kapur, S. & Maes, P. AlterEgo: a personalized wearable silent speech interface. In Proc. 23rd International Conference on Intelligent User Interfaces (Eds Berkovsky, S. et al.) 43–53 (Association for Computing Machinery, 2018). ; Shao, L. Facial movements recognition using multichannel EMG signals. In Proc. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC) (Eds Zhu, S. et al.) 561–566 (Institute of Electrical and Electronics Engineers, 2019). ; Essa, I. A. & Pentland, A. P. Facial expression recognition using a dynamic model and motion energy. In Proc. IEEE International Conference on Computer Vision 360–367 (Institute of Electrical and Electronics Engineers, 1995). ; Essa, I., Basu, S., Darrell, T. & Pentland, A. Modeling, tracking and interactive animation of faces and heads using input from video. In Proc. Computer Animation ‘96 Vol. 96 (Eds Thalmann, N. M. & Thalmann, D.) 68–79 (Institute of Electrical and Electronics Engineers, 1996). ; La Cascia, M., Valenti, L. & Sclaroff, S. Fully automatic, real-time detection of facial gestures from generic video. In Proc. IEEE 6th Workshop on Multimedia Signal Processing, 2004 (Ed. Barni, M), 175–178 (Institute of Electrical and Electronics Engineers, 2004). ; Wilson, A. J., Chin, B. C., Hsu, V. M., Mirzabeigi, M. N. & Percec, I. Digital image correlation: a novel dynamic three-dimensional imaging technique for precise quantification of the dynamic rhytid and botulinum toxin type A efficacy. Plast. Reconstr. Surg. 135, 869e–876e (2015). (PMID: 10.1097/PRS.000000000000122425919269) ; Miura, N., Sakamoto, T., Aoyagi, Y. & Yoneyama, S. Visualizing surface strain distribution of facial skin using stereovision. Theor. Appl. Mech. Lett. 6, 167–170 (2016). (PMID: 10.1016/j.taml.2016.05.005) ; Chen, Z. et al. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo. J. Biomed. Opt. 22, 095001 (2017). ; Dagnes, N. et al. Optimal marker set assessment for motion capture of 3D mimic facial movements. J. Biomech. 93, 86–93 (2019). (PMID: 10.1016/j.jbiomech.2019.06.01231327523) ; de Lucena, J. O., Lima, J. P., Thomas, D. & Teichrieb, V. Real-time facial motion capture using RGB-D images under complex motion and occlusions. In Proc. 2019 21st Symposium on Virtual and Augmented Reality (SVR) (Eds Raposo, A. & Trevisan, D.) 120–129 (Institute of Electrical and Electronics Engineers, 2019). ; Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015). (PMID: 10.1038/nmat428925985458) ; Yuan, J. et al. Computational models for the determination of depth-dependent mechanical properties of skin with a soft, flexible measurement device. Proc. R. Soc. A 472, 20160225 (2016). (PMID: 10.1098/rspa.2016.0225278433955095436) ; Feng, X. et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5, 3326–3332 (2011). (PMID: 10.1021/nn200477q21395261) ; Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019). (PMID: 10.1126/science.aay722131649196) ; Dagdeviren, C. et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9, 3398–3404 (2013). (PMID: 10.1002/smll.20130014623606533) ; Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). (PMID: 10.1038/ncomms263923535654) ; Persano, L. et al. Shear piezoelectricity in poly(vinylidenefluoride-co-trifluoroethylene): full piezotensor coefficients by molecular modeling, biaxial transverse response, and use in suspended energy-harvesting nanostructures. Adv. Mater. 28, 7633–7639 (2016). (PMID: 10.1002/adma.20150638127357595) ; Dagdeviren, C. et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 9, 269–281 (2016). (PMID: 10.1016/j.eml.2016.05.015) ; Dagdeviren, C., Li, Z. & Wang, Z. L. Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 19, 85–108 (2017). (PMID: 10.1146/annurev-bioeng-071516-04451728633564) ; Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014). (PMID: 10.1073/pnas.1317233111244498533918766) ; Dagdeviren, C. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat. Biomed. Eng. 1, 807–817 (2017). (PMID: 10.1038/s41551-017-0140-731015594) ; Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019). (PMID: 10.1038/s41928-019-0286-2) ; Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). (PMID: 10.1038/ncomms549625092496) ; Yeo, W.-H. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013). (PMID: 10.1002/adma.20120442623440975) ; Akiyama, M. et al. Preparation of oriented aluminum nitride thin films on polyimide films and piezoelectric response with high thermal stability and flexibility. Adv. Funct. Mater. 17, 458–462 (2007). (PMID: 10.1002/adfm.200600098) ; Fei, C. et al. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 51, 146–161 (2018). (PMID: 10.1016/j.nanoen.2018.06.062) ; Doll, J. C., Petzold, B. C., Ninan, B., Mullapudi, R. & Pruitt, B. L. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers. J. Micromech. Microeng. 20, 025008 (2009). (PMID: 10.1088/0960-1317/20/2/025008) ; Shelton, S. et al. CMOS-compatible AlN piezoelectric micromachined ultrasonic transducers. In Proc. 2009 IEEE International Ultrasonics Symposium (Ed. Yuhas, M. P.) 402–405 (Institute of Electrical and Electronics Engineers, 2009). ; Rödel, J. et al. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015). (PMID: 10.1016/j.jeurceramsoc.2014.12.013) ; Priya, S. & Nahm, S. Lead-Free Piezoelectrics (Springer Science & Business Media, 2011). ; Wang, S. et al. Mechanics of epidermal electronics. J. Appl. Mech. 79, 031022 (2012). (PMID: 10.1115/1.4005963) ; Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). (PMID: 10.1126/science.120615721836009) ; Solav, D., Moerman, K. M., Jaeger, A. M., Genovese, K. & Herr, H. M. MultiDIC: an open-source toolbox for multi-view 3D digital image correlation. IEEE Access 6, 30520–30535 (2018). (PMID: 10.1109/ACCESS.2018.2843725) ; Solav, D., Moerman, K. M., Jaeger, A. M. & Herr, H. A framework for measuring the time-varying shape and full-field deformation of residual limbs using 3D digital image correlation. IEEE Trans. Biomed. Eng. 66, 2740–2752 (2019). (PMID: 10.1109/TBME.2019.289528330676943) ; Blaber, J., Adair, B. & Antoniou, A. Ncorr: open-source 2D digital image correlation MATLAB software. Exp. Mech. 55, 1105–1122 (2015). (PMID: 10.1007/s11340-015-0009-1) ; Pan, B., Qian, K., Xie, H. & Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20, 062001 (2009). (PMID: 10.1088/0957-0233/20/6/062001) ; Solav, D., Rubin, M. B., Cereatti, A., Camomilla, V. & Wolf, A. Bone pose estimation in the presence of soft tissue artifact using triangular cosserat point elements. Ann. Biomed. Eng. 44, 1181–1190 (2016). (PMID: 10.1007/s10439-015-1384-626194039) ; Solav, D. et al. Chest wall kinematics using triangular cosserat point elements in healthy and neuromuscular subjects. Ann. Biomed. Eng. 45, 1963–1973 (2017). (PMID: 10.1007/s10439-017-1840-628451990) ; Zhao, Y. et al. Investigation of mechanical behaviour of amorphous aluminium nitride. Materialia 2, 148–156 (2018). (PMID: 10.1016/j.mtla.2018.07.011) ; Ansari, M. & Amin Karami, M. Experimental study on nonlinear thermally buckled piezoelectric energy harvesters for leadless pacemakers. In Proc. Active and Passive Smart Structures and Integrated Systems XII (Eds Erturk, A. & Han, J.-H.) 105951A (Society of Photo-Optical Instrumentation Engineers, 2018). ; Ansari, M. H. & Amin Karami, M. Energy harvesting from controlled buckling of piezoelectric beams. Smart Mater. Struct. 24, 115005 (2015). (PMID: 10.1088/0964-1726/24/11/115005) ; Ansari, M. H. & Amin Karami, M. Nonlinear thermally buckled piezoelectric energy harvester. In Proc. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control V006T09A065 (American Society of Mechanical Engineers, 2016). ; Karami, M. A., Inman, D. J. & Ansari, M. H. Energy harvesting from constrained buckling of piezoelectric beams. US patent 10447177 (2019). ; Ansari, M. H. & Karami, M. A. Energy harvesting from controlled buckling of a horizontal piezoelectric beam. In Proc. ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference V008T11A017 (American Society of Mechanical Engineers Digital Collection, 2015). ; Karami, M. A. & Inman, D. J. Controlled buckling of piezoelectric beams for direct energy harvesting from passing vehicles. In Proc. ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 1231–1236 (American Society of Mechanical Engineers Digital Collection, 2013). ; Abou-Rayan, A. M., Nayfeh, A. H., Mook, D. T. & Nayfeh, M. A. Nonlinear response of a parametrically excited buckled beam. Nonlinear Dyn. 4, 499–525 (1993). (PMID: 10.1007/BF00053693) ; Erturk, A. & Inman, D. J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009). (PMID: 10.1088/0964-1726/18/2/025009) ; Karami, M. A. & Inman, D. J. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2011). (PMID: 10.1016/j.jsv.2011.06.021) ; Nayfeh, A. H. & Frank Pai, P. Linear and Nonlinear Structural Mechanics (John Wiley & Sons, 2004). ; Virgin, L. N. Vibration of Axially Loaded Structures (Cambridge University Press, 2007). ; Sirohi, J. & Chopra, I. Fundamental understanding of piezoelectric strain sensors. In Proc. Smart Structures and Materials 1999: Smart Structures and Integrated Systems (Ed. Wereley, N. M.) 528–542 (Society of Photo-Optical Instrumentation Engineers, 1999). ; Varatharajan, R., Manogaran, G., Priyan, M. K. & Sundarasekar, R. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 21, 681–690 (2018). (PMID: 10.1007/s10586-017-0977-2) ; Zhang, Z. et al. Dynamic time warping under limited warping path length. Inf. Sci. 393, 91–107 (2017). (PMID: 10.1016/j.ins.2017.02.018) ; Wan, Y., Chen, X.-L. & Shi, Y. Adaptive cost dynamic time warping distance in time series analysis for classification. J. Comput. Appl. Math. 319, 514–520 (2017). (PMID: 10.1016/j.cam.2017.01.004) ; Salvador, S. & Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11, 561–580 (2007). (PMID: 10.3233/IDA-2007-11508) ; Aristidou, A., Cohen-Or, D. & Hodgins, J. K. Self-similarity analysis for motion capture cleaning. Comput. Graph. 37, 297–309 (2018). ; Zhao, W. et al. Real-time vehicle motion detection and motion altering for connected vehicle: algorithm design and practical applications. Sensors 19, 4108 (2019). (PMID: 10.3390/s191941086806330) ; Tait, R. N. & Mirfazli, A. Low temperature aluminum nitride deposition on aluminum by rf reactive sputtering. J. Vac. Sci. Technol. A 19, 1586–1590 (2001). (PMID: 10.1116/1.1351804) ; Iqbal, A. & Mohd-Yasin, F. Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: a review. Sensors 18, 1797 (2018). (PMID: 10.3390/s180617976022188) ; Zhang, Q. M. & Zhao, J. Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1518–1526 (1999). (PMID: 10.1109/58.80887618244349) ; Jiang, X. et al. Monolithic ultrasound fingerprint sensor. Microsyst. Nanoeng. 3, 17059 (2017). (PMID: 31057884644501310.1038/micronano.2017.59) ; Tadigadapa, S. & Mateti, K. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009). (PMID: 10.1088/0957-0233/20/9/092001) ; Ruby, R. The ‘how & why’ a deceptively simple acoustic resonator became the basis of a multi-billion dollar industry. In Proc. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (Eds Nguyen, C. & Meng, E.) 308–314 (Institute of Electrical and Electronics Engineers, 2017). ; Chen, G. & Rinaldi, M. Aluminum nitride combined overtone resonators for the 5G high frequency bands. J. Microelectromech. Syst. 29, 148–159 (2020). ; Petroni, S. et al. Tactile multisensing on flexible aluminum nitride. Analyst 137, 5260–5264 (2012). (PMID: 10.1039/c2an36015b23012692) ; Petroni, S. et al. Aluminum nitride piezo-MEMS on polyimide flexible substrates. Microelectron. Eng. 88, 2372–2375 (2011). (PMID: 10.1016/j.mee.2011.02.080) ; Akiyama, M. et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100, 114318 (2006). (PMID: 10.1063/1.2401312) ; Jackson, N., Keeney, L. & Mathewson, A. Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications. Smart Mater. Struct. 22, 115033 (2013). (PMID: 10.1088/0964-1726/22/11/115033) ; Li, Q. et al. Growth and characterization of polyimide-supported AlN films for flexible surface acoustic wave devices. J. Electron. Mater. 45, 2702–2709 (2016). (PMID: 10.1007/s11664-016-4420-x) ; Bi, X., Wu, Y., Wu, J., Li, H. & Zhou, L. A model for longitudinal piezoelectric coefficient measurement of the aluminum nitride thin films. J. Mater. Sci. Mater. Electron. 25, 2435–2442 (2014). (PMID: 10.1007/s10854-014-1885-3) ; Yang, J. et al. Growth of AlN films as a function of temperature on Mo films deposited by different techniques. J. Electron. Mater. 43, 369–374 (2014). (PMID: 10.1007/s11664-013-2867-6) ; Lu, Y. et al. Surface morphology and microstructure of pulsed DC magnetron sputtered piezoelectric AlN and AlScN thin films. Phys. Status Solidi 215, 1700559 (2018). (PMID: 10.1002/pssa.201700559) ; Martin, F., Muralt, P., Dubois, M.-A. & Pezous, A. Thickness dependence of the properties of highly c-axis textured AlN thin films. J. Vac. Sci. Technol. A 22, 361–365 (2004). (PMID: 10.1116/1.1649343) ; Miyanaga, M. et al. Evaluation of AlN single-crystal grown by sublimation method. J. Cryst. Growth 300, 45–49 (2007). (PMID: 10.1016/j.jcrysgro.2006.10.233) ; Sanz-Hervás, A. et al. Comparative study of c-axis AlN films sputtered on metallic surfaces. Diam. Relat. Mater. 14, 1198–1202 (2005). (PMID: 10.1016/j.diamond.2004.11.010) ; Yarar, E. et al. Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 6, 075115 (2016). (PMID: 10.1063/1.4959895) ; Singh, A. V., Chandra, S. & Bose, G. Deposition and characterization of c-axis oriented aluminum nitride films by radio frequency magnetron sputtering without external substrate heating. Thin Solid Films 519, 5846–5853 (2011). (PMID: 10.1016/j.tsf.2011.02.074) ; Tay, K.-W., Huang, C.-L., Wu, L. & Lin, M.-S. Performance characterization of thin AlN films deposited on Mo electrode for thin-film bulk acoustic-wave resonators. Jpn. J. Appl. Phys. 43, 5510 (2004). (PMID: 10.1143/JJAP.43.5510) ; Schnable, G. L. & Keen, R. S. Aluminum metallization—advantages and limitations for integrated circuit applications. Proc. IEEE 57, 1570–1580 (1969). (PMID: 10.1109/PROC.1969.7338) ; Obuh, I. E. et al. Low-cost microfabrication for MEMS switches and varactors. IEEE Trans. Compon. Packaging Manuf. Technol. 8, 1702–1710 (2018). (PMID: 10.1109/TCPMT.2018.2834865) ; Baeg, K.-J., Bae, G.-T. & Noh, Y.-Y. Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V 2 O 5 interlayer. ACS Appl. Mater. Inter. 5, 5804–5810 (2013). (PMID: 10.1021/am401375c) ; Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). (PMID: 10.1126/science.118238320339064) ; Artieda, A., Barbieri, M., Sandu, C. S. & Muralt, P. Effect of substrate roughness on c-oriented AlN thin films. J. Appl. Phys. 105, 024504 (2009). (PMID: 10.1063/1.3068309) ; Luboz, V., Promayon, E. & Payan, Y. Linear elastic properties of the facial soft tissues using an aspiration device: towards patient specific characterization. Ann. Biomed. Eng. 42, 2369–2378 (2014). (PMID: 10.1007/s10439-014-1098-125186433) ; Kim, Y.-S. et al. Regional thickness of facial skin and superficial fat: application to the minimally invasive procedures. Clin. Anat. 32, 1008–1018 (2019). (PMID: 10.1002/ca.2333130629772) ; Leo, D. J. Engineering Analysis of Smart Material Systems (John Wiley & Sons, 2007). ; Goodno, B. J. & Gere, J. M. Mechanics of Materials SI edn (Cengage Learning, 2017). ; Popov, E. P. & Balan, T. A. Engineering Mechanics of Solids 2nd edn (Prentice Hall, 1999). ; Bauchau, O. A. & Craig, J. I. Structural Analysis: With Applications to Aerospace Structures (Springer Science & Business Media, 2009). ; Rao, S. S. Vibration of Continuous Systems (John Wiley & Sons, 2019). ; Lepi, S. Practical Guide to Finite Elements: A Solid Mechanics Approach (CRC Press, 1998). ; Inman, D. J. Engineering Vibration (Prentice Hall, 2001). ; Rao, S. S. in Vibration of Continuous Systems 393–419 (John Wiley & Sons, 2006). ; Tsagkrasoulis, D., Hysi, P., Spector, T. & Montana, G. Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping. Sci. Rep. 7, 45885 (2017). (PMID: 28422179539582310.1038/srep45885) ; Du, S. et al. A new electrode design method in piezoelectric vibration energy harvesters to maximize output power. Sensor. Actuat. A Phys. 263, 693–701 (2017). (PMID: 10.1016/j.sna.2017.06.026) ; Erturk, A. & Inman, D. J. Piezoelectric Energy Harvesting (John Wiley & Sons, 2011). ; Nayfeh, A. H. & Balachandran, B. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods (John Wiley & Sons, 2008). ; Karami, M. A., Varoto, P. S. & Inman, D. J. Experimental study of the nonlinear hybrid energy harvesting system. In Modal Analysis Topics: Proc. Society for Experimental Mechanics Series. Vol. 3 (Ed. Proulx, T.) 461–478 (Springer, 2011). ; Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018). ; Baker, S. & Matthews, I. Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56, 221–255 (2004). (PMID: 10.1023/B:VISI.0000011205.11775.fd) ; Pan, B. Reliability-guided digital image correlation for image deformation measurement. Appl. Opt. 48, 1535–1542 (2009). (PMID: 10.1364/AO.48.00153519277087) ; Koydemir, H. C. & Ozcan, A. Wearable and implantable sensors for biomedical applications. Annu. Rev. Anal. Chem. 11, 127–146 (2018). (PMID: 10.1146/annurev-anchem-061417-125956) ; Coletta, N. A., Mallette, M. M., Gabriel, D. A., Tyler, C. J. & Cheung, S. S. Core and skin temperature influences on the surface electromyographic responses to an isometric force and position task. PLoS ONE 13, e0195219 (2018). (PMID: 29596491587585710.1371/journal.pone.0195219)
  • Substance Nomenclature: 0 (Dimethylpolysiloxanes) ; 63148-62-9 (baysilon)
  • Entry Date(s): Date Created: 20201023 Date Completed: 20201230 Latest Revision: 20220422
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -