Zum Hauptinhalt springen

S100A8/A9 mediate the reprograming of normal mammary epithelial cells induced by dynamic cell-cell interactions with adjacent breast cancer cells.

Jo, SH ; Heo, WH ; et al.
In: Scientific reports, Jg. 11 (2021-01-14), Heft 1, S. 1337
Online academicJournal

Titel:
S100A8/A9 mediate the reprograming of normal mammary epithelial cells induced by dynamic cell-cell interactions with adjacent breast cancer cells.
Autor/in / Beteiligte Person: Jo, SH ; Heo, WH ; Son, HY ; Quan, M ; Hong, BS ; Kim, JH ; Lee, HB ; Han, W ; Park, Y ; Lee, DS ; Kwon, NH ; Park, MC ; Chae, J ; Kim, JI ; Noh, DY ; Moon, HG
Link:
Zeitschrift: Scientific reports, Jg. 11 (2021-01-14), Heft 1, S. 1337
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2021
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-80625-2
Schlagwort:
  • Animals
  • Breast Neoplasms pathology
  • Cell Line, Tumor
  • Epithelial Cells pathology
  • Female
  • Humans
  • Mammary Glands, Human pathology
  • Mice
  • Mice, Inbred BALB C
  • Breast Neoplasms metabolism
  • Calgranulin A metabolism
  • Calgranulin B metabolism
  • Cell Communication
  • Epithelial Cells metabolism
  • Mammary Glands, Human metabolism
  • Neoplasm Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2021 Jan 14; Vol. 11 (1), pp. 1337. <i>Date of Electronic Publication: </i>2021 Jan 14.
  • MeSH Terms: Cell Communication* ; Breast Neoplasms / *metabolism ; Calgranulin A / *metabolism ; Calgranulin B / *metabolism ; Epithelial Cells / *metabolism ; Mammary Glands, Human / *metabolism ; Neoplasm Proteins / *metabolism ; Animals ; Breast Neoplasms / pathology ; Cell Line, Tumor ; Epithelial Cells / pathology ; Female ; Humans ; Mammary Glands, Human / pathology ; Mice ; Mice, Inbred BALB C
  • References: Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252. https://doi.org/10.1038/nrc2618 (2009). (PMID: 10.1038/nrc261819279573) ; Hanahan, D. & Coussens, L. M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322. https://doi.org/10.1016/j.ccr.2012.02.022 (2012). (PMID: 10.1016/j.ccr.2012.02.02222439926) ; Place, A. E., Jin Huh, S. & Polyak, K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 13, 227. https://doi.org/10.1186/bcr2912 (2011). (PMID: 10.1186/bcr2912220780263326543) ; Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022. https://doi.org/10.1038/ni.2703 (2013). (PMID: 10.1038/ni.2703240481234118725) ; Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598. https://doi.org/10.1038/nrc.2016.73 (2016). (PMID: 10.1038/nrc.2016.7327550820) ; Lee, J. et al. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS ONE 12, e0174126. https://doi.org/10.1371/journal.pone.0174126 (2017). (PMID: 10.1371/journal.pone.0174126283339775363867) ; Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264. https://doi.org/10.1038/nrc3239 (2012). (PMID: 10.1038/nrc3239224378704856023) ; Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25, 198–213. https://doi.org/10.1016/j.tcb.2014.11.006 (2015). (PMID: 10.1016/j.tcb.2014.11.00625540894) ; Fang, H. & Declerck, Y. A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 73, 4965–4977. https://doi.org/10.1158/0008-5472.CAN-13-0661 (2013). (PMID: 10.1158/0008-5472.CAN-13-066123913938) ; Porazinski, S. et al. EphA2 drives the segregation of Ras-transformed epithelial cells from normal neighbors. Curr. Biol. 26, 3220–3229. https://doi.org/10.1016/j.cub.2016.09.037 (2016). (PMID: 10.1016/j.cub.2016.09.03727839970) ; Saitoh, S. et al. Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells. Proc. Natl. Acad. Sci. USA 114, E2327–E2336. https://doi.org/10.1073/pnas.1602349114 (2017). (PMID: 10.1073/pnas.1602349114282706085373379) ; Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467. https://doi.org/10.1038/ncb1853 (2009). (PMID: 10.1038/ncb185319287376) ; Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115, 39–50 (2002). (PMID: 10.1242/jcs.115.1.39) ; Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32. https://doi.org/10.1016/j.ccr.2004.06.010 (2004). (PMID: 10.1016/j.ccr.2004.06.01015261139) ; Mattila, P. K. & Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454. https://doi.org/10.1038/nrm2406 (2008). (PMID: 10.1038/nrm240618464790) ; Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010. https://doi.org/10.1126/science.1093133 (2004). (PMID: 10.1126/science.109313314963329) ; Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008). (PMID: 10.1016/j.cell.2008.03.027) ; Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527. https://doi.org/10.1038/nm1764 (2008). (PMID: 10.1038/nm176418438415) ; Kajita, M. et al. Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. J. Cell Sci. 123, 171–180. https://doi.org/10.1242/jcs.057976 (2010). (PMID: 10.1242/jcs.05797620026643) ; Ivers, L. P. et al. Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture. Cancer Cell Int. 14, 108. https://doi.org/10.1186/s12935-014-0108-6 (2014). (PMID: 10.1186/s12935-014-0108-6253790144221723) ; Trujillo, K. A. et al. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int. J. Cancer 129, 1310–1321. https://doi.org/10.1002/ijc.25788 (2011). (PMID: 10.1002/ijc.25788211050473249233) ; Fong, E. L. et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77, 164–172. https://doi.org/10.1016/j.biomaterials.2015.10.059 (2016). (PMID: 10.1016/j.biomaterials.2015.10.05926599623) ; Roh-Johnson, M. et al. Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev. Cell 43, 549–562. https://doi.org/10.1016/j.devcel.2017.11.003 (2017). (PMID: 10.1016/j.devcel.2017.11.003292072585728704) ; Leung, C. T. & Brugge, J. S. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482, 410–413. https://doi.org/10.1038/nature10826 (2012). (PMID: 10.1038/nature10826223185153297969) ; Kajita, M. & Fujita, Y. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals. J. Biochem. 158, 15–23. https://doi.org/10.1093/jb/mvv050 (2015). (PMID: 10.1093/jb/mvv05025991731) ; Srikrishna, G. S100A8 and S100A9: new insights into their roles in malignancy. J. Innate Immun. 4, 31–40. https://doi.org/10.1159/000330095 (2012). (PMID: 10.1159/00033009521912088) ; Moon, A. et al. Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol. Cancer Res. 6, 1544–1553. https://doi.org/10.1158/1541-7786.MCR-08-0189 (2008). (PMID: 10.1158/1541-7786.MCR-08-018918922970) ; Yong, H. Y. et al. Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia 13, 98–107 (2011). (PMID: 10.1593/neo.101088) ; Wiza, C., Nascimento, E. B. & Ouwens, D. M. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am. J. Physiol. Endocrinol. Metab. 302, E1453-1460. https://doi.org/10.1152/ajpendo.00660.2011 (2012). (PMID: 10.1152/ajpendo.00660.201122354785) ; Kim, L. C., Cook, R. S. & Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36, 2191–2201. https://doi.org/10.1038/onc.2016.363 (2017). (PMID: 10.1038/onc.2016.36327748764) ; Duluc, C. et al. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol. Med. 7, 735–753. https://doi.org/10.15252/emmm.201404346 (2015). (PMID: 10.15252/emmm.201404346258341454459815)
  • Grant Information: NRF-2019R1C1C1006898 National Research Foundation of Korea; NRF-2019R1A2C2005277 National Research Foundation of Korea; HA15C0011 Korea Health Industry Development Institute
  • Substance Nomenclature: 0 (Calgranulin A) ; 0 (Calgranulin B) ; 0 (Neoplasm Proteins) ; 0 (S100A8 protein, human) ; 0 (S100A9 protein, human)
  • Entry Date(s): Date Created: 20210115 Date Completed: 20210810 Latest Revision: 20210930
  • Update Code: 20231215
  • PubMed Central ID: PMC7809201

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -