Zum Hauptinhalt springen

Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation.

Khan, SR ; Canales, BK ; et al.
In: Nature reviews. Nephrology, Jg. 17 (2021-06-01), Heft 6, S. 417-433
academicJournal

Titel:
Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation.
Autor/in / Beteiligte Person: Khan, SR ; Canales, BK ; Dominguez-Gutierrez, PR
Zeitschrift: Nature reviews. Nephrology, Jg. 17 (2021-06-01), Heft 6, S. 417-433
Veröffentlichung: London Nature Pub. Group, 2021
Medientyp: academicJournal
ISSN: 1759-507X (electronic)
DOI: 10.1038/s41581-020-00392-1
Schlagwort:
  • Animals
  • Calcium Phosphates metabolism
  • Humans
  • Immunity physiology
  • Inflammation immunology
  • Inflammation pathology
  • Kidney Calculi immunology
  • Kidney Calculi metabolism
  • Kidney Calculi pathology
  • Kidney Medulla immunology
  • Kidney Medulla metabolism
  • Calcium Oxalate metabolism
  • Immunity immunology
  • Inflammation metabolism
  • Kidney Calculi etiology
  • Kidney Medulla pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Nat Rev Nephrol] 2021 Jun; Vol. 17 (6), pp. 417-433. <i>Date of Electronic Publication: </i>2021 Jan 29.
  • MeSH Terms: Calcium Oxalate / *metabolism ; Immunity / *immunology ; Inflammation / *metabolism ; Kidney Calculi / *etiology ; Kidney Medulla / *pathology ; Animals ; Calcium Phosphates / metabolism ; Humans ; Immunity / physiology ; Inflammation / immunology ; Inflammation / pathology ; Kidney Calculi / immunology ; Kidney Calculi / metabolism ; Kidney Calculi / pathology ; Kidney Medulla / immunology ; Kidney Medulla / metabolism
  • References: Sorokin, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017). (PMID: 2821386010.1007/s00345-017-2008-6) ; Scales, C. D. Jr, Smith, A. C., Hanley, J. M., Saigal, C. S. & Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012). (PMID: 22498635336266510.1016/j.eururo.2012.03.052) ; Xu, G. et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ 362, k1497 (2018). (PMID: 30181166612225310.1136/bmj.k1497) ; Obligado, S. H. & Goldfarb, D. S. The association of nephrolithiasis with hypertension and obesity: a review. Am. J. Hypertens. 21, 257–264 (2008). (PMID: 1821930010.1038/ajh.2007.62) ; Daudon, M. & Jungers, P. Diabetes and nephrolithiasis. Curr. Diab. Rep. 7, 443–448 (2007). (PMID: 1825500810.1007/s11892-007-0075-6) ; West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am. J. Kidney Dis. 51, 741–747 (2008). (PMID: 1843608410.1053/j.ajkd.2007.12.030) ; Strazzullo, P. et al. Past history of nephrolithiasis and incidence of hypertension in men: a reappraisal based on the results of the Olivetti Prospective Heart Study. Nephrol. Dial. Transplant. 16, 2232–2235 (2001). (PMID: 1168267310.1093/ndt/16.11.2232) ; Shoag, J., Halpern, J., Goldfarb, D. S. & Eisner, B. H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 192, 1440–1445 (2014). (PMID: 2492914010.1016/j.juro.2014.05.117) ; Keddis, M. T. & Rule, A. D. Nephrolithiasis and loss of kidney function. Curr. Opin. Nephrol. Hypertens. 22, 390–396 (2013). (PMID: 23736840407453710.1097/MNH.0b013e32836214b9) ; Tiselius, H. G. Possibilities for preventing recurrent calcium stone formation: principles for the metabolic evaluation of patients with calcium stone disease. BJU Int. 88, 158–168 (2001). (PMID: 1144687410.1046/j.1464-410x.2001.02308.x) ; Khan, S. R. et al. Kidney stones. Nat. Rev. Dis. Primers 2, 16008 (2016). (PMID: 27188687568551910.1038/nrdp.2016.8) ; Uribarri, J., Oh, M. S. & Carroll, H. J. The first kidney stone. Ann. Intern. Med. 111, 1006–1009 (1989). (PMID: 268850310.7326/0003-4819-111-12-1006) ; D’Costa, M. R. et al. Symptomatic and radiographic manifestations of kidney stone recurrence and their prediction by risk factors: a prospective cohort study. J. Am. Soc. Nephrol. 30, 1251–1260 (2019). (PMID: 31175141662240910.1681/ASN.2018121241) ; Hyams, E. S. & Matlaga, B. R. Economic impact of urinary stones. Transl. Androl. Urol. 3, 278–283 (2014). (PMID: 268167774708578) ; Antonelli, J. A., Maalouf, N. M., Pearle, M. S. & Lotan, Y. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur. Urol. 66, 724–729 (2014). (PMID: 25015037422739410.1016/j.eururo.2014.06.036) ; Ziemba, J. B. & Matlaga, B. R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 58, 299–306 (2017). (PMID: 28868500557732510.4111/icu.2017.58.5.299) ; Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009–1027 (1937). (PMID: 17856988139048310.1097/00000658-193706000-00014) ; Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003). (PMID: 1261851515190010.1172/JCI17038) ; Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43, 109–123 (2015). (PMID: 2511950610.1007/s00240-014-0705-9) ; Khan, S. R., Finlayson, B. & Hackett, R. Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23, 194–199 (1984). (PMID: 669549110.1016/0090-4295(84)90021-9) ; Randall, A. Papillary pathology as a precursor of primary renal calculus. J. Urol. 44, 580–589 (1940). (PMID: 10.1016/S0022-5347(17)71305-5) ; Randall, A. Recent advances in knowledge relating to the formation, recognition and treatment of kidney calculi. Bull. N. Y. Acad. Med. 20, 473–484 (1944). (PMID: 193124061870034) ; Khan, S. R. Histological aspects of the “fixed-particle” model of stone formation: animal studies. Urolithiasis 45, 75–87 (2017). (PMID: 2789639110.1007/s00240-016-0949-7) ; Moe, O. W., Pearle, M. S. & Sakhaee, K. Pharmacotherapy of urolithiasis: evidence from clinical trials. Kidney Int. 79, 385–392 (2011). (PMID: 2092703910.1038/ki.2010.389) ; Mandel, N. S., Henderson, J. D. Jr, Hung, L. Y., Wille, D. F. & Wiessner, J. H. A porcine model of calcium oxalate kidney stone disease. J. Urol. 171, 1301–1303 (2004). (PMID: 1476733710.1097/01.ju.0000110101.41653.bb) ; Penniston, K. L., Patel, S. R., Schwahn, D. J. & Nakada, S. Y. Studies using a porcine model: what insights into human calcium oxalate stone formation mechanisms has this model facilitated? Urolithiasis 45, 109–125 (2017). (PMID: 2790491510.1007/s00240-016-0947-9) ; Wu, X. R. Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall’s plaques. Urolithiasis 43, 65–76 (2015). (PMID: 2509680010.1007/s00240-014-0699-3) ; Haggit, R. C. & Pitcock, J. A. Renal medullary calcification: a light and electron microscopic study. J. Urol. 106, 342–347 (1971). (PMID: 10.1016/S0022-5347(17)61284-9) ; Stoller, M. L., Low, R. K., Shami, G. S., McCormick, V. D. & Kerschmann, R. L. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J. Urol. 156, 1263–1266 (1996). (PMID: 880885010.1016/S0022-5347(01)65565-4) ; Darves-Bornoz, A. et al. Renal papillary mapping and quantification of Randall’s plaque in pediatric calcium oxalate stone formers. J Endourol 33, 863–867 (2019). (PMID: 3140759410.1089/end.2019.0377) ; Bouchireb, K. et al. Papillary stones with Randall’s plaques in children: clinicobiological features and outcome. Nephrol. Dial. Transplant. 27, 1529–1534 (2012). (PMID: 2181383010.1093/ndt/gfr439) ; Letavernier, E. et al. Demographics and characterization of 10,282 Randall plaque-related kidney stones: a new epidemic? Medicine 94, e566 (2015). (PMID: 25761176460246510.1097/MD.0000000000000566) ; Khan, S. R., Rodriguez, D. E., Gower, L. B. & Monga, M. Association of Randall plaque with collagen fibers and membrane vesicles. J. Urol. 187, 1094–1100 (2012). (PMID: 22266007362593310.1016/j.juro.2011.10.125) ; Evan, A. P. et al. Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int. 72, 1503–1511 (2007). (PMID: 1789869710.1038/sj.ki.5002569) ; Evan, A., Lingeman, J., Coe, F. L. & Worcester, E. Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 69, 1313–1318 (2006). (PMID: 1661472010.1038/sj.ki.5000238) ; Carpentier, X. et al. High Zn content of Randall’s plaque: a mu-X-ray fluorescence investigation. J. Trace. Elem. Med. Biol. 25, 160–165 (2011). (PMID: 2176311610.1016/j.jtemb.2011.05.004) ; Kuo, R. L. et al. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int. 64, 2150–2154 (2003). (PMID: 1463313710.1046/j.1523-1755.2003.00316.x) ; Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519 (2016). (PMID: 27452364583727710.1038/nrneph.2016.101) ; Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Renal Physiol. 315, F1236–F1242 (2018). (PMID: 30066583629328610.1152/ajprenal.00035.2018) ; Khan, S. R. Nephrocalcinosis in animal models with and without stones. Urol. Res. 38, 429–438 (2010). (PMID: 20658131299210110.1007/s00240-010-0303-4) ; Khan, S. R. Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol. Res. 23, 71–79 (1995). (PMID: 767653710.1007/BF00307936) ; de Bruijn, W. C. et al. Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc. 8, 541–549; discussion 549–50 (1994). (PMID: 7747156) ; Khan, S. R. Tubular cell surface events during nephrolithiasis. Curr. Opin. Urol. 7, 240–247 (1997). (PMID: 10.1097/00042307-199707000-00012) ; Khan, S. R., Finlayson, B. & Hackett, R. L. Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am. J. Pathol. 107, 59–69 (1982). (PMID: 70651251915996) ; Khan, S. R., Glenton, P. A. & Byer, K. J. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int. 70, 914–923 (2006). (PMID: 1685002410.1038/sj.ki.5001699) ; Khan, S. R. & Glenton, P. A. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J. Urol. 153, 811–817 (1995). (PMID: 786154510.1016/S0022-5347(01)67728-0) ; Nguyen, H. T. & Woodard, J. C. Intranephronic calculosis in rats: an ultrastructural study. Am. J. Pathol. 100, 39–56 (1980). (PMID: 73959681903778) ; Chi, T. et al. A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 10, e0124150 (2015). (PMID: 25970330443022510.1371/journal.pone.0124150) ; Chen, Y. H. et al. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney Int. 80, 369–377 (2011). (PMID: 2145146210.1038/ki.2011.80) ; Khan, S. R. & Glenton, P. A. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am. J. Physiol. Renal Physiol. 294, F1109–F1115 (2008). (PMID: 1833754410.1152/ajprenal.00620.2007) ; Chau, H., El-Maadawy, S., McKee, M. D. & Tenenhouse, H. S. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J. Bone Miner. Res. 18, 644–657 (2003). (PMID: 1267432510.1359/jbmr.2003.18.4.644) ; Weinman, E. J. et al. Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am. J. Physiol. Renal. Physiol. 290, F838–F843 (2006). (PMID: 1624927210.1152/ajprenal.00374.2005) ; Letavernier, E. et al. ABCC6 deficiency promotes development of randall plaque. J. Am. Soc. Nephrol. 29, 2337–2347 (2018). (PMID: 29991491611567110.1681/ASN.2017101148) ; Li, Q., Chou, D. W., Price, T. P., Sundberg, J. P. & Uitto, J. Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6(tm1Jfk) and Enpp1(asj) mutant mice. Lab. Invest. 94, 623–632 (2014). (PMID: 24732453403961710.1038/labinvest.2014.52) ; Bouderlique, E. et al. Vitamin D and calcium supplementation accelerates Randall’s plaque formation in a murine model. Am. J. Pathol. 189, 2171–2180 (2019). (PMID: 3144977510.1016/j.ajpath.2019.07.013) ; Pomozi, V. et al. Pyrophosphate supplementation prevents chronic and acute calcification in ABCC6-deficient mice. Am. J. Pathol. 187, 1258–1272 (2017). (PMID: 28416300545506610.1016/j.ajpath.2017.02.009) ; Blazquez-Medela, A. M. et al. ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio. 5, 257–263 (2015). (PMID: 25893161439866410.1016/j.fob.2015.03.009) ; Mo, L. et al. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am. J. Physiol. Renal Physiol. 293, F1935–F1943 (2007). (PMID: 1789803810.1152/ajprenal.00383.2007) ; Khan, S. R. & Kok, D. J. Modulators of urinary stone formation. Front. Biosci. 9, 1450–1482 (2004). (PMID: 1497755910.2741/1347) ; Fleisch, H. & Bisaz, S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195, 911 (1962). (PMID: 1389348710.1038/195911a0) ; Villa-Bellosta, R. & O’Neill, W. C. Pyrophosphate deficiency in vascular calcification. Kidney Int. 93, 1293–1297 (2018). (PMID: 2958063610.1016/j.kint.2017.11.035) ; Liu, Y. et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am. J. Physiol. Renal. Physiol. 299, F469–F478 (2010). (PMID: 20591941294430010.1152/ajprenal.00243.2010) ; Wesson, J. A. et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J. Am. Soc. Nephrol. 14, 139–147 (2003). (PMID: 1250614610.1097/01.ASN.0000040593.93815.9D) ; Khan, S. R. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol. Res. 40, 95–112 (2012). (PMID: 22213019568318510.1007/s00240-011-0448-9) ; Krohn, J. B., Hutcheson, J. D., Martinez-Martinez, E. & Aikawa, E. Extracellular vesicles in cardiovascular calcification: expanding current paradigms. J. Physiol. 594, 2895–2903 (2016). (PMID: 26824781488767410.1113/JP271338) ; Zazzeroni, L., Faggioli, G. & Pasquinelli, G. Mechanisms of arterial calcification: the role of matrix vesicles. Eur. J. Vasc. Endovasc. Surg. 55, 425–432 (2018). (PMID: 2937103610.1016/j.ejvs.2017.12.009) ; Evan, A. P. et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int. 68, 145–154 (2005). (PMID: 1595490310.1111/j.1523-1755.2005.00388.x) ; Merchant, M. L. et al. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am. J. Physiol. Renal Physiol. 295, F1254–F1258 (2008). (PMID: 18701630257613610.1152/ajprenal.00134.2008) ; Canales, B. K. et al. Proteome of human calcium kidney stones. Urology 76, 1017 e13–1017 e20 (2010). (PMID: 10.1016/j.urology.2010.05.005) ; Boonla, C. et al. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin. Chim. Acta 429, 81–89 (2014). (PMID: 2433339110.1016/j.cca.2013.11.036) ; Stoller, M. L., Meng, M. V., Abrahams, H. M. & Kane, J. P. The primary stone event: a new hypothesis involving a vascular etiology. J. Urol. 171, 1920–1924 (2004). (PMID: 1507631210.1097/01.ju.0000120291.90839.49) ; Chen, L. et al. Anatomically-specific intratubular and interstitial biominerals in the human renal medullo-papillary complex. PLoS One 12, e0187103 (2017). (PMID: 29145401569065310.1371/journal.pone.0187103) ; Hsi, R. S., Ramaswamy, K., Ho, S. P. & Stoller, M. L. The origins of urinary stone disease: upstream mineral formations initiate downstream Randall’s plaque. BJU Int. 119, 177–184 (2017). (PMID: 2730686410.1111/bju.13555) ; Wiener, S. V. et al. Novel insights into renal mineralization and stone formation through advanced imaging modalities. Connect. Tissue Res. 59, 102–110 (2018). (PMID: 29745818612085210.1080/03008207.2017.1409219) ; Hsi, R. S. et al. Coronary artery calcium score and association with recurrent nephrolithiasis: the multi-ethnic study of atherosclerosis. J. Urol. 195, 971–976 (2016). (PMID: 2645410310.1016/j.juro.2015.10.001) ; Reiner, A. P. et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J. Urol. 185, 920–925 (2011). (PMID: 2125167810.1016/j.juro.2010.10.086) ; Masterson, J. H. et al. Dyslipidemia is associated with an increased risk of nephrolithiasis. Urolithiasis 43, 49–53 (2015). (PMID: 2519308710.1007/s00240-014-0719-3) ; Khan, S. R. & Glenton, P. A. Increased urinary excretion of lipids by patients with kidney stones. Br. J. Urol. 77, 506–511 (1996). (PMID: 877760810.1046/j.1464-410X.1996.09324.x) ; Sur, R. L. et al. Impact of statins on nephrolithiasis in hyperlipidemic patients: a 10-year review of an equal access health care system. Clin. Nephrol. 79, 351–355 (2012). (PMID: 10.5414/CN107775) ; Wahl, P., Ducasa, G. M. & Fornoni, A. Systemic and renal lipids in kidney disease development and progression. Am. J. Physiol. Renal Physiol. 310, F433–F445 (2016). (PMID: 2669798210.1152/ajprenal.00375.2015) ; Tesfamariam, B. The effects of HMG-CoA reductase inhibitors on endothelial function. Am. J. Cardiovasc. Drugs 6, 115–120 (2006). (PMID: 1655586410.2165/00129784-200606020-00005) ; Cohen, A. J. et al. Impact of statin intake on kidney stone formation. Urology 124, 57–61 (2019). (PMID: 2942129910.1016/j.urology.2018.01.029) ; Cappuccio, F. P. et al. A prospective study of hypertension and the incidence of kidney stones in men. J. Hypertens. 17, 1017–1022 (1999). (PMID: 1041907610.1097/00004872-199917070-00019) ; Lopes, H. F. et al. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 41, 422–430 (2003). (PMID: 1262393810.1161/01.HYP.0000053450.19998.11) ; Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253–2259 (2009). (PMID: 19679672275409810.1681/ASN.2009030276) ; Umekawa, T., Hatanaka, Y., Kurita, T. & Khan, S. R. Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J. Am. Soc. Nephrol. 15, 635–644 (2004). (PMID: 1497816510.1097/01.ASN.0000113321.49771.2D) ; Joshi, S., Saylor, B. T., Wang, W., Peck, A. B. & Khan, S. R. Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS One 7, e47738 (2012). (PMID: 23091645347302310.1371/journal.pone.0047738) ; Kohri, K. et al. Biomolecular mechanism of urinary stone formation involving osteopontin. Urol. Res. 40, 623–637 (2012). (PMID: 2312411510.1007/s00240-012-0514-y) ; Khan, S. R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol. 3, 256–276 (2014). (PMID: 253833214220551) ; Joshi, S., Wang, W., Peck, A. B. & Khan, S. R. Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J. Urol. 193, 1684–1691 (2015). (PMID: 2543753210.1016/j.juro.2014.11.093) ; Schwille, P. O., Manoharan, M. & Schmiedl, A. Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin. Chem. Lab. Med. 43, 590–600 (2005). (PMID: 1600625410.1515/CCLM.2005.103) ; Holoch, P. A. & Tracy, C. R. Antioxidants and self-reported history of kidney stones: the National Health and Nutrition Examination Survey. J. Endourol. 25, 1903–1908 (2011). (PMID: 2186402310.1089/end.2011.0130) ; Grewal, J. S., Tsai, J. Y. & Khan, S. R. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem. J. 387, 609–616 (2005). (PMID: 15533056113499010.1042/BJ20041465) ; Okada, A. et al. Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J. Bone Miner. Res. 25, 2701–2711 (2010). (PMID: 2057796810.1002/jbmr.158) ; Khan, A., Wang, W. & Khan, S. R. Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J. Urol. 32, 123–130 (2014). (PMID: 2347521310.1007/s00345-013-1050-2) ; Khan, S. R. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin. Exp. Nephrol. 8, 75–88 (2004). (PMID: 1523592310.1007/s10157-004-0292-0) ; Umekawa, T., Byer, K., Uemura, H. & Khan, S. R. Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol. Dial. Transplant. 20, 870–878 (2005). (PMID: 1575575610.1093/ndt/gfh750) ; Shroff, R. C. & Shanahan, C. M. The vascular biology of calcification. Semin. Dial. 20, 103–109 (2007). (PMID: 1737408210.1111/j.1525-139X.2007.00255.x) ; Schurgers, L. J., Cranenburg, E. C. & Vermeer, C. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb. Haemost. 100, 593–603 (2008). (PMID: 1884128010.1160/TH08-02-0087) ; Shanahan, C. M., Proudfoot, D., Farzaneh-Far, A. & Weissberg, P. L. The role of Gla proteins in vascular calcification. Crit.Rev. Eukaryot. Gene Expr. 8, 357–375 (1998). (PMID: 980770010.1615/CritRevEukarGeneExpr.v8.i3-4.60) ; Price, P. A., Urist, M. R. & Otawara, Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem. Biophys. Res. Commun. 117, 765–771 (1983). (PMID: 660773110.1016/0006-291X(83)91663-7) ; Fraser, J. D. & Price, P. A. Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent matrix Gla protein. Implications for the possible functions of matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J. Biol. Chem. 263, 11033–11036 (1988). (PMID: 304276410.1016/S0021-9258(18)37912-2) ; Gourgas, O., Marulanda, J., Zhang, P., Murshed, M. & Cerruti, M. Multidisciplinary approach to understand medial arterial calcification. Arterioscler. Thromb. Vasc. Biol. 38, 363–372 (2018). (PMID: 2921750710.1161/ATVBAHA.117.309808) ; Gao, B. et al. A polymorphism of matrix Gla protein gene is associated with kidney stones. J. Urol. 177, 2361–2365 (2007). (PMID: 1750935910.1016/j.juro.2007.01.118) ; Lu, X. et al. A polymorphism of matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511, 127–130 (2012). (PMID: 2304657510.1016/j.gene.2012.09.112) ; Wang, Q. et al. High concentration of calcium promotes mineralization in NRK-52E cells via inhibiting the expression of matrix gla protein. Urology 119, 161 e1–161 e7 (2018). (PMID: 10.1016/j.urology.2018.06.006) ; Jahnen-Dechent, W., Schafer, C., Ketteler, M. & McKee, M. D. Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J. Mol. Med. 86, 379–389 (2008). (PMID: 1808080810.1007/s00109-007-0294-y) ; Moe, S. M. et al. Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int. 67, 2295–2304 (2005). (PMID: 1588227110.1111/j.1523-1755.2005.00333.x) ; Schinke, T. et al. The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J. Biol. Chem. 271, 20789–20796 (1996). (PMID: 870283310.1074/jbc.271.34.20789) ; Ketteler, M. et al. Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int. Suppl. 63, S84–S87 (2003). (PMID: 10.1046/j.1523-1755.63.s84.21.x) ; Ford, M. L., Tomlinson, L. A., Chapman, T. P., Rajkumar, C. & Holt, S. G. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension 55, 1110–1115 (2010). (PMID: 2021226910.1161/HYPERTENSIONAHA.109.143024) ; Mehrsai, A., Guitynavard, F., Nikoobakht, M. R., Gooran, S. & Ahmadi, A. The relationship between serum and urinary Fetuin-A levels and kidney stone formation among kidney stone patients. Cent. European J. Urol. 70, 394–399 (2017). (PMID: 294108925791390) ; Liberman, M. & Marti, L. C. Vascular calcification regulation by exosomes in the vascular wall. Adv. Exp. Med. Biol. 998, 151–160 (2017). (PMID: 2893673810.1007/978-981-10-4397-0_10) ; Heiss, A. et al. Structural basis of calcification inhibition by α 2 -HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341 (2003). (PMID: 1255646910.1074/jbc.M210868200) ; Holt, S. G. & Smith, E. R. Fetuin-A-containing calciprotein particles in mineral trafficking and vascular disease. Nephrol. Dial. Transplant. 31, 1583–1587 (2016). (PMID: 2719033210.1093/ndt/gfw048) ; Okumura, N. et al. Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 8, e68624 (2013). (PMID: 23874695370636310.1371/journal.pone.0068624) ; Taguchi, K. et al. Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J. Am. Soc. Nephrol. 28, 333–347 (2017). (PMID: 2729795010.1681/ASN.2015111271) ; Sun, A. Y. et al. Inflammatory cytokines in the papillary tips and urine of nephrolithiasis patients. J. Endourol. 32, 236–244 (2018). (PMID: 2933831410.1089/end.2017.0699) ; Taguchi, K. et al. M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci. Rep. 6, 35167 (2016). (PMID: 27731368505969710.1038/srep35167) ; Xi, J. et al. Sirtuin 3 suppresses the formation of renal calcium oxalate crystals through promoting M2 polarization of macrophages. J. Cell Physiol. 234, 11463–11473 (2019). (PMID: 3058860910.1002/jcp.27803) ; Kovacevic, L., Lu, H., Caruso, J. A., Kovacevic, N. & Lakshmanan, Y. Urinary proteomics reveals association between pediatric nephrolithiasis and cardiovascular disease. Int. Urol. Nephrol. 50, 1949–1954 (2018). (PMID: 3020973810.1007/s11255-018-1976-9) ; Kusumi, K. et al. Adolescents with urinary stones have elevated urine levels of inflammatory mediators. Urolithiasis 47, 461–466 (2019). (PMID: 30993354676543410.1007/s00240-019-01133-1) ; Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019). (PMID: 3069266510.1038/s41581-019-0110-2) ; Kusmartsev, S. et al. Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J. Urol. 195, 1143–1151 (2016). (PMID: 2662621710.1016/j.juro.2015.11.048) ; Umekawa, T., Chegini, N. & Khan, S. R. Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol. Dial. Transplant. 18, 664–669 (2003). (PMID: 1263763310.1093/ndt/gfg140) ; Dominguez-Gutierrez, P. R., Kusmartsev, S., Canales, B. K. & Khan, S. R. Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front. Immunol. 9, 1863 (2018). (PMID: 30186283611340210.3389/fimmu.2018.01863) ; Taguchi, K. et al. Colony-stimulating factor-1 signaling suppresses renal crystal formation. J. Am. Soc. Nephrol. 25, 1680–1697 (2014). (PMID: 24578130411605710.1681/ASN.2013060675) ; Anders, H. J. et al. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int. 93, 656–669 (2018). (PMID: 2924162410.1016/j.kint.2017.09.022) ; Zhu, W. et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 10, 275 (2019). (PMID: 30894518642703010.1038/s41419-019-1358-y) ; Khan, S. R. & Thamilselvan, S. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol. Urol. 4, 305–312 (2000). (PMID: 11156696) ; Okada, A. et al. Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol. Res. 35, 89–99 (2007). (PMID: 1739319610.1007/s00240-007-0082-8) ; de Water, R. et al. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am. J. Kidney Dis. 33, 761–771 (1999). (PMID: 1019602110.1016/S0272-6386(99)70231-3) ; Khan, S. R. et al. Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J. Am. Soc. Nephrol. 10, 457–463 (1999). ; de Bruijn, W. C. et al. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc. 9, 103–114 (1995). (PMID: 8553009) ; Canton, J., Khezri, R., Glogauer, M. & Grinstein, S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell. 25, 3330–3341 (2014). (PMID: 25165138421478010.1091/mbc.e14-05-0967) ; Zuo, J., Khan, A., Glenton, P. A. & Khan, S. R. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague–Dawley rats. Nephrol. Dial. Transplant. 26, 1785–1796 (2011). (PMID: 21378157314540210.1093/ndt/gfr035) ; Joshi, S., Wang, W. & Khan, S. R. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: inflammatory changes are mainly associated with crystal deposition. PLoS One 12, e0185009 (2017). (PMID: 29091707566542310.1371/journal.pone.0185009) ; Joshi, G. N., Goetjen, A. M. & Knecht, D. A. Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol. Biol. Cell. 26, 3150–3164 (2015). (PMID: 26202463456930810.1091/mbc.e15-03-0126) ; Shanahan, C. M., Crouthamel, M. H., Kapustin, A. & Giachelli, C. M. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ. Res. 109, 697–711 (2011). (PMID: 21885837324914610.1161/CIRCRESAHA.110.234914) ; Murshed, M. & McKee, M. D. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr. Opin. Nephrol. Hypertens. 19, 359–365 (2010). (PMID: 2048961410.1097/MNH.0b013e3283393a2b) ; Golub, E. E. Biomineralization and matrix vesicles in biology and pathology. Semin. Immunopathol. 33, 409–417 (2010). (PMID: 21140263313976810.1007/s00281-010-0230-z) ; Fasano, J. M. & Khan, S. R. Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study. Kidney Int. 59, 169–178 (2001). (PMID: 1113506910.1046/j.1523-1755.2001.00477.x) ; Khan, S. R., Glenton, P. A., Backov, R. & Talham, D. R. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int. 62, 2062–2072 (2002). (PMID: 1242713010.1046/j.1523-1755.2002.00676.x) ; Khan, S. R. & Canales, B. K. Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J. Urol. 186, 1107–1113 (2011). (PMID: 21784483362592410.1016/j.juro.2011.04.109) ; Khan, S. R. et al. Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif. Tissue Int. 59, 357–365 (1996). (PMID: 884940210.1007/s002239900140) ; Khan, S. R., Shevock, P. N. & Hackett, R. L. Presence of lipids in urinary stones: results of preliminary studies. Calcif. Tissue Int. 42, 91–96 (1988). (PMID: 312703010.1007/BF02556340) ; Skotland, T., Hessvik, N. P., Sandvig, K. & Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid. Res. 60, 9–18 (2019). (PMID: 3007620710.1194/jlr.R084343) ; Joshi, S., Clapp, W. L., Wang, W. & Khan, S. R. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim. Biophys. Acta 1852, 2000–2012 (2015). (PMID: 26122267452340810.1016/j.bbadis.2015.06.020) ; Khan, S. R., Joshi, S. & Wang, W. Dedifferentiation of renal epithelial cells into osteogenic cells and formation of Randall’s plaque. J. Am. Soc. Nephrol. 25, 101A (2014). ; Hunter, G. K. Role of osteopontin in modulation of hydroxyapatite formation. Calcif. Tissue Int. 93, 348–354 (2013). (PMID: 2333430310.1007/s00223-013-9698-6) ; Liu, T. M. & Lee, E. H. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng. B Rev. 19, 254–263 (2013). (PMID: 10.1089/ten.teb.2012.0527) ; Liu, W. et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J. Cell. Biol. 155, 157–166 (2001). (PMID: 11581292215079910.1083/jcb.200105052) ; Matsubara, T. et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem. 283, 29119–29125 (2008). (PMID: 18703512266201210.1074/jbc.M801774200) ; Lomashvili, K. A., Garg, P., Narisawa, S., Millan, J. L. & O’Neill, W. C. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int. 73, 1024–1030 (2008). (PMID: 18288101301085310.1038/ki.2008.26) ; Okada, A. et al. Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J. Bone Miner. Res. 24, 908–924 (2009). (PMID: 1911393310.1359/jbmr.081245) ; Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell. Biol. 7, 131–142 (2006). (PMID: 1649341810.1038/nrm1835) ; Jia, Z. et al. Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83, 509 e7–509 14 (2014). (PMID: 10.1016/j.urology.2013.11.004) ; Jia, Z. et al. Role of calcium in the regulation of bone morphogenetic protein 2, Runt-related transcription factor 2 and Osterix in primary renal tubular epithelial cells by the vitamin D receptor. Mol. Med. Rep. 12, 2082–2088 (2015). (PMID: 2582339410.3892/mmr.2015.3568) ; Convento, M., Pessoa, E., Aragao, A., Schor, N. & Borges, F. Oxalate induces type II epithelial to mesenchymal transition (EMT) in inner medullary collecting duct cells (IMCD) in vitro and stimulate the expression of osteogenic and fibrotic markers in kidney medulla in vivo. Oncotarget 10, 1102–1118 (2019). (PMID: 30800221638368710.18632/oncotarget.26634) ; Miyazawa, K., Aihara, K., Ikeda, R., Moriyama, M. T. & Suzuki, K. cDNA macroarray analysis of genes in renal epithelial cells exposed to calcium oxalate crystals. Urol. Res. 37, 27–33 (2009). (PMID: 1906687810.1007/s00240-008-0164-2) ; Mezzabotta, F. et al. Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation. J. Cell. Mol. Med. 19, 889–902 (2015). (PMID: 25692823439520210.1111/jcmm.12514) ; Evan, A. P. et al. Biopsy proven medullary sponge kidney: clinical findings, histopathology, and role of osteogenesis in stone and plaque formation. Anat. Rec. 298, 865–877 (2015). (PMID: 10.1002/ar.23105) ; Khan, S. R. & Gambaro, G. Role of osteogenesis in the formation of Randall’s plaques. Anat. Rec. 299, 5–7 (2016). (PMID: 10.1002/ar.23275) ; Collett, G. D. & Canfield, A. E. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res. 96, 930–938 (2005). (PMID: 1589098010.1161/01.RES.0000163634.51301.0d) ; Doherty, M. J. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828–838 (1998). (PMID: 961074710.1359/jbmr.1998.13.5.828) ; Cola, C., Almeida, M., Li, D., Romeo, F. & Mehta, J. L. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem. Biophys. Res. Commun. 320, 424–427 (2004). (PMID: 1521984510.1016/j.bbrc.2004.05.181) ; Sarica, K., Aydin, H., Yencilek, F., Telci, D. & Yilmaz, B. Human umbilical vein endothelial cells accelerate oxalate-induced apoptosis of human renal proximal tubule epithelial cells in co-culture system which is prevented by pyrrolidine dithiocarbamate. Urol. Res. 40, 461–466 (2012). (PMID: 2222302810.1007/s00240-011-0450-2) ; Priante, G. et al. Human proximal tubular cells can form calcium phosphate deposits in osteogenic culture: role of cell death and osteoblast-like transdifferentiation. Cell Death Discov. 5, 57 (2019). (PMID: 30701089634993510.1038/s41420-019-0138-x) ; Chinetti-Gbaguidi, G. et al. Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resorption activity. Circ. Res. 121, 19–30 (2017). (PMID: 2843877910.1161/CIRCRESAHA.116.310262) ; Rogers, M. A., Aikawa, M. & Aikawa, E. Macrophage heterogeneity complicates reversal of calcification in cardiovascular tissues. Circ. Res. 121, 5–7 (2017). (PMID: 28642321550736610.1161/CIRCRESAHA.117.311219) ; Bushinsky, D. A., Frick, K. K. & Nehrke, K. Genetic hypercalciuric stone-forming rats. Curr. Opin. Nephrol. Hypertens. 15, 403–418 (2006). (PMID: 1677545510.1097/01.mnh.0000232881.35469.a9) ; Agharazii, M. et al. Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease-related vascular calcification. Am. J. Hypertens. 28, 746–755 (2015). (PMID: 2543069710.1093/ajh/hpu225) ; Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008). (PMID: 18378684239745510.1074/jbc.M800021200) ; Khan, S. R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol. 189, 803–811 (2013). (PMID: 2302201110.1016/j.juro.2012.05.078) ; Khan, S. R., Joshi, S., Wang, W. & Peck, A. B. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am. J. Physiol. Renal Physiol. 306, F1285–F1295 (2014). (PMID: 24598804404210810.1152/ajprenal.00057.2014) ; Wen, C. et al. Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification. Int. J. Cardiol. 168, 2242–2247 (2013). (PMID: 2345344510.1016/j.ijcard.2013.01.211) ; Chen, T. C. et al. The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell Biosci. 10, 5 (2020). (PMID: 31938471695330810.1186/s13578-019-0372-1) ; Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000). (PMID: 1100957010.1161/01.RES.87.7.e10) ; Jono, S., Shioi, A., Ikari, Y. & Nishizawa, Y. Vascular calcification in chronic kidney disease. J. Bone Miner. Metab. 24, 176–181 (2006). (PMID: 1650212910.1007/s00774-005-0668-6) ; Kapustin, A. N. et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ. Res. 109, e1–e12 (2011). (PMID: 2156621410.1161/CIRCRESAHA.110.238808) ; Kapustin, A. N. & Shanahan, C. M. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc. Med. 22, 133–137 (2012). (PMID: 2290217910.1016/j.tcm.2012.07.009) ; Gambaro, G. et al. Crystals, Randall’s plaques and renal stones: do bone and atherosclerosis teach us something? J. Nephrol. 17, 774–777 (2004). (PMID: 15593050) ; Zhu, F., Friedman, M. S., Luo, W., Woolf, P. & Hankenson, K. D. The transcription factor Osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J. Cell. Physiol. 227, 2677–2685 (2012). (PMID: 21898406324189810.1002/jcp.23010) ; Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018). (PMID: 29514202585263310.1093/cvr/cvy010) ; Shroff, R. C. et al. The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol. Dial. Transplant. 23, 3263–3271 (2008). (PMID: 1846332310.1093/ndt/gfn226) ; Kapustin, A. N. & Shanahan, C. M. Osteocalcin: a novel vascular metabolic and osteoinductive factor? Arterioscler. Thromb. Vasc. Biol. 31, 2169–2171 (2011). (PMID: 2191820910.1161/ATVBAHA.111.233601) ; Shanahan, C. M. et al. Expression of mineralisation-regulating proteins in association with human vascular calcification. Z. Kardiol. 89, 63–68 (2000). (PMID: 1076940510.1007/s003920070101) ; Shanahan, C. M. Vascular calcification. Curr. Opin. Nephrol. Hypertens. 14, 361–367 (2005). (PMID: 1593100510.1097/01.mnh.0000172723.52499.38) ; Shioi, A. & Ikari, Y. Plaque calcification during atherosclerosis progression and regression. J. Atheroscler. Thromb. 25, 294–303 (2018). (PMID: 29238011590618110.5551/jat.RV17020) ; Cho, K. I., Sakuma, I., Sohn, I. S., Jo, S. H. & Koh, K. K. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease. Atherosclerosis 277, 60–65 (2018). (PMID: 3017308010.1016/j.atherosclerosis.2018.08.029) ; Li, G. et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J. Thorac. Cardiovasc. Surg. 153, 1318–1327 e1 (2017). (PMID: 2828324110.1016/j.jtcvs.2017.01.052) ; Anderson, L. & Mc, D. J. The origin, frequency, and significance of microscopic calculi in the kidney. Surg. Gynecol. Obstet. 82, 275–282 (1946). (PMID: 21014137) ; Roberts, S. D. & Resnick, M. I. Glycosaminoglycans content of stone matrix. J. Urol. 135, 1078–1083 (1986). (PMID: 395923410.1016/S0022-5347(17)45979-9) ; Talham, D. R. et al. Role of lipids in urinary stones: studies of calcium oxalate precipitation at phospholipid langmuir monolayers. Langmuir 22, 2450–2456 (2006). (PMID: 1651944010.1021/la052503u) ; Nishio, S. et al. Matrix glycosaminoglycan in urinary stones. J. Urol. 134, 503–505 (1985). (PMID: 403254810.1016/S0022-5347(17)47259-4)
  • Substance Nomenclature: 0 (Calcium Phosphates) ; 2612HC57YE (Calcium Oxalate) ; 97Z1WI3NDX (calcium phosphate)
  • Entry Date(s): Date Created: 20210130 Date Completed: 20210630 Latest Revision: 20230128
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -