Zum Hauptinhalt springen

Utilizing bacteriophage to define the minimum residence time within a plug flow reactor.

Brown, MR ; Orozco, R
In: Biotechnology and bioengineering, Jg. 118 (2021-09-01), Heft 9, S. 3367-3374
Online academicJournal

Titel:
Utilizing bacteriophage to define the minimum residence time within a plug flow reactor.
Autor/in / Beteiligte Person: Brown, MR ; Orozco, R
Link:
Zeitschrift: Biotechnology and bioengineering, Jg. 118 (2021-09-01), Heft 9, S. 3367-3374
Veröffentlichung: <2005->: Hoboken, NJ : Wiley ; <i>Original Publication</i>: New York, Wiley., 2021
Medientyp: academicJournal
ISSN: 1097-0290 (electronic)
DOI: 10.1002/bit.27734
Schlagwort:
  • Bacteriophage phi X 174
  • Bioreactors
  • Models, Biological
  • Virus Inactivation
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Biotechnol Bioeng] 2021 Sep; Vol. 118 (9), pp. 3367-3374. <i>Date of Electronic Publication: </i>2021 Mar 11.
  • MeSH Terms: Bacteriophage phi X 174* ; Bioreactors* ; Models, Biological* ; Virus Inactivation*
  • References: Amarikwa, L. , Orozco, R. , Brown, M. , & Coffman, J. (2019). Impact of Dean vortices on the integrity testing of a continuous viral inactivation reactor. Biotechnol Journal, 2019(14), 1700726. https://doi.org/10.1002/biot.201700726. ; Arnold, L. , Lee, K. , Rucker-Pezzini, J. , & Lee, J. (2019). Implementation of fully integrated continuous antibody processing: Effects on productivity and COGm. Biotechnology Journal, 14, 1800061. https://doi.org/10.1002/biot.201800061. ; Brown, M. R. , Johnson, S. A. , Brorson, K. A. , Lute, S. C. , & Roush, D. J. (2017). A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system. Biotechnology and Bioengineering, 114(7), 1487-1494. https://doi.org/10.1002/bit.26251. ; Brown, M. R. , Orozco, R. , & Coffman, J. (2020). Leveraging flow mechanics to determine critical process and scaling parameters in a continuous viral inactivation reactor. Biotechnology and Bioengineering, 117(3), 637-645. https://doi.org/10.1002/bit.27223, https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27223. ; Gillespie, C. , Holstein, M. , Mullin, L. , Cotoni, K. , Caulmare, J. , & Greenhalgh, P. (2018). Continuous in-line virus inactivation for next generation bioprocessing. Biotechnology Journal, 2018, e1700718. https://doi.org/10.1002/biot.201700718. ; Johnson, S. , Brown, M. , Lute, S. , & Brorson, K. (2017). Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnology and Bioengineering, 114(1), 21-32. https://doi.org/10.1002/bit.26060. ; Klutz, S. , Lobedann, M. , Bramsiepe, C. , & Schembecker, G. (2016). Continuous viral inactivation at low pH value in antibody manufacturing. Chemical Engineering and Processing: Process Intensification, 102, 88-101. https://doi.org/10.1016/j.cep.2016.01.002. ; Klutz, S. , Magnus, J. , Lobedann, M. , Schwan, P. , Maiser, B. , Niklas, J. , & Schembecker, G. (2015). Developing the biofacility of the future based on continuous processing and single-use technology. Journal of Biotechnology, 213, 120-130. https://doi.org/10.1016/j.jbiotec.2015.06.388. ; Lute, S. , Bailey, M. , Combs, J. , Sukumar, M. , & Brorson, K. (2007). Phage passage after extended processing in small-virus-retentive filters. Biotechnology and Applied Biochemistry, 47(3), 141-151. https://doi.org/10.1042/BA20060254. ; Orozco, R. , Godfrey, S. , Coffman, J. , Amarikwa, L. , Parker, S. , Hernandez, L. , Wachuku, C. , Mai, B. , Song, B. , Hoskatti, S. , Asong, J. , Shamlou, P. , Bardliving, C. , & Fiadeiro, M. (2017). Design, construction, and optimization of a novel, modular, and scalable incubation chamber for continuous viral inactivation. Biotechnology Progress, 33(4), 954-965. https://doi.org/10.1002/btpr.2442. ; Parker, S. , Amarikwa, L. , Vehar, K. , Orozco, R. , Godfrey, S. , Coffman, J. , Shamlou, P. , & Bardliving, C. (2018). Design of a novel continuous flow reactor for low pH viral inactivation. Biotechnology and Bioengineering, 115(3), 606-616. https://doi.org/10.1002/bit.26497.
  • Contributed Indexing: Keywords: Dean vortices; continuous manufacturing; plug flow reactor; scale down; scale up; viral inactivation
  • Entry Date(s): Date Created: 20210227 Date Completed: 20220302 Latest Revision: 20220302
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -