Zum Hauptinhalt springen

Inhibitory Effects of Dexmedetomidine and Propofol on Gastrointestinal Tract Motility Involving Impaired Enteric Glia Ca <superscript>2+</superscript> Response in Mice.

Li, Y ; Wang, Y ; et al.
In: Neurochemical research, Jg. 46 (2021-06-01), Heft 6, S. 1410-1422
Online academicJournal

Titel:
Inhibitory Effects of Dexmedetomidine and Propofol on Gastrointestinal Tract Motility Involving Impaired Enteric Glia Ca <superscript>2+</superscript> Response in Mice.
Autor/in / Beteiligte Person: Li, Y ; Wang, Y ; Chang, H ; Cheng, B ; Miao, J ; Li, S ; Hu, H ; Huang, L ; Wang, Q
Link:
Zeitschrift: Neurochemical research, Jg. 46 (2021-06-01), Heft 6, S. 1410-1422
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press, 2021
Medientyp: academicJournal
ISSN: 1573-6903 (electronic)
DOI: 10.1007/s11064-021-03280-7
Schlagwort:
  • Animals
  • Cells, Cultured
  • Colon drug effects
  • Defecation drug effects
  • Gastric Emptying drug effects
  • Gastrointestinal Transit drug effects
  • Intestine, Small cytology
  • Intestine, Small drug effects
  • Male
  • Mice, Inbred C57BL
  • Mice
  • Calcium metabolism
  • Dexmedetomidine pharmacology
  • Gastrointestinal Motility drug effects
  • Hypnotics and Sedatives pharmacology
  • Neuroglia drug effects
  • Propofol pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Neurochem Res] 2021 Jun; Vol. 46 (6), pp. 1410-1422. <i>Date of Electronic Publication: </i>2021 Mar 03.
  • MeSH Terms: Calcium / *metabolism ; Dexmedetomidine / *pharmacology ; Gastrointestinal Motility / *drug effects ; Hypnotics and Sedatives / *pharmacology ; Neuroglia / *drug effects ; Propofol / *pharmacology ; Animals ; Cells, Cultured ; Colon / drug effects ; Defecation / drug effects ; Gastric Emptying / drug effects ; Gastrointestinal Transit / drug effects ; Intestine, Small / cytology ; Intestine, Small / drug effects ; Male ; Mice, Inbred C57BL ; Mice
  • References: Jerath A, Ferguson ND, Steel A, Wijeysundera D, Macdonald J, Wasowicz M (2015) The use of volatile anesthetic agents for long-term critical care sedation (VALTS): study protocol for a pilot randomized controlled trial. Trials 16:560. https://doi.org/10.1186/s13063-015-1083-5. (PMID: 10.1186/s13063-015-1083-5266464044673781) ; Venn RM, Grounds RM (2001) Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Br J Anaesth 87(5):684–690. https://doi.org/10.1093/bja/87.5.684. (PMID: 10.1093/bja/87.5.68411878517) ; Iirola T, Vilo S, Aantaa R, Wendelin-Saarenhovi M, Neuvonen PJ, Scheinin M, Olkkola KT (2011) Dexmedetomidine inhibits gastric emptying and oro-caecal transit in healthy volunteers. Br J Anaesth 106(4):522–527. https://doi.org/10.1093/bja/aer004. (PMID: 10.1093/bja/aer00421307009) ; Inada T, Asai T, Yamada M, Shingu K (2004) Propofol and midazolam inhibit gastric emptying and gastrointestinal transit in mice. Anesth Analg 99(4):1102–1106. https://doi.org/10.1213/01.Ane.0000130852.53082.D5. (PMID: 10.1213/01.Ane.0000130852.53082.D515385358) ; Kreis ME (2006) Postoperative nausea and vomiting. Auton Neurosci 129(1–2):86–91. https://doi.org/10.1016/j.autneu.2006.07.017. (PMID: 10.1016/j.autneu.2006.07.01716942921) ; Greif R, Laciny S, Rapf B, Hickle RS, Sessler DI (1999) Supplemental oxygen reduces the incidence of postoperative nausea and vomiting. Anesthesiology 91(5):1246–1252. https://doi.org/10.1097/00000542-199911000-00014. (PMID: 10.1097/00000542-199911000-0001410551573) ; Fruhwald S, Holzer P, Metzler H (2007) Intestinal motility disturbances in intensive care patients pathogenesis and clinical impact. Intensive Care Med 33(1):36–44. https://doi.org/10.1007/s00134-006-0452-7. (PMID: 10.1007/s00134-006-0452-717115132) ; Friedberg BL (1993) Hypnotic doses of propofol block ketamine-induced hallucinations. Plast Reconstr Surg 91(1):196–197. (PMID: 10.1097/00006534-199301000-00047) ; Lee TL, Ang SB, Dambisya YM, Adaikan GP, Lau LC (1999) The effect of propofol on human gastric and colonic muscle contractions. Anesth Analg 89(5):1246–1249. (PMID: 10.1213/00000539-199911000-00031) ; Maze M, Tranquilli W (1991) Alpha-2 adrenoceptor agonists: defining the role in clinical anesthesia. Anesthesiology 74(3):581–605. (PMID: 10.1097/00000542-199103000-00029) ; Gregersen H, Kraglund K, Rittig S, Tottrup A (1989) The effect of a new selective alpha 2-adrenoreceptor antagonist, idazoxan, and the agonist, clonidine, on fasting antroduodenal motility in healthy volunteers. Aliment Pharmacol Ther 3(5):435–443. (PMID: 10.1111/j.1365-2036.1989.tb00234.x) ; Aydin C, Bagcivan I, Gursoy S, Altun A, Topcu O, Koyuncu A (2009) Altered spontaneous contractions of the ileum by anesthetic agents in rats exposed to peritonitis. World J Gastroenterol 15(13):1620–1624. https://doi.org/10.3748/wjg.15.1620. (PMID: 10.3748/wjg.15.1620193409052669946) ; Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA (2019) Early sedation with dexmedetomidine in critically Ill patients. N Engl J Med 380(26):2506–2517. https://doi.org/10.1056/NEJMoa1904710. (PMID: 10.1056/NEJMoa190471031112380) ; Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P, De Giorgio R (2014) Enteric glial cells: recent developments and future directions. Gastroenterology 147(6):1230–1237. https://doi.org/10.1053/j.gastro.2014.09.040. (PMID: 10.1053/j.gastro.2014.09.04025305504) ; McClain J, Grubisic V, Fried D, Gomez-Suarez RA, Leinninger GM, Sevigny J, Parpura V, Gulbransen BD (2014) Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 146(2):497–507. https://doi.org/10.1053/j.gastro.2013.10.061. (PMID: 10.1053/j.gastro.2013.10.06124211490) ; Liu X, Gangoso E, Yi C, Jeanson T, Kandelman S, Mantz J, Giaume C (2016) General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons. Glia 64(4):524–536. https://doi.org/10.1002/glia.22946. (PMID: 10.1002/glia.2294626666873) ; Gelegen C, Gent TC, Ferretti V, Zhang Z, Yustos R, Lan F, Yang Q, Overington DW, Vyssotski AL, van Lith HA, Wisden W, Franks NP (2014) Staying awake–a genetic region that hinders alpha2 adrenergic receptor agonist-induced sleep. Eur J Neurosci 40(1):2311–2319. https://doi.org/10.1111/ejn.12570. (PMID: 10.1111/ejn.12570246744484215598) ; Olofsen E, Sleigh JW, Dahan A (2008) Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth 101(6):810–821. https://doi.org/10.1093/bja/aen290. (PMID: 10.1093/bja/aen29018852113) ; Staniek M, Lehnertz K (2008) Symbolic transfer entropy. Phys Rev Lett 100(15):158101. https://doi.org/10.1103/PhysRevLett.100.158101. (PMID: 10.1103/PhysRevLett.100.15810118518155) ; Li Y, Wu Y, Li R, Wang C, Jia N, Zhao C, Wen A, Xiong L (2015) Propofol regulates the surface expression of GABAA receptors: implications in synaptic inhibition. Anesth Analg 121(5):1176–1183. https://doi.org/10.1213/ane.0000000000000884. (PMID: 10.1213/ane.000000000000088426241086) ; Nagakura Y, Naitoh Y, Kamato T, Yamano M, Miyata K (1996) Compounds possessing 5-HT3 receptor antagonistic activity inhibit intestinal propulsion in mice. Eur J Pharmacol 311(1):67–72. https://doi.org/10.1016/0014-2999(96)00403-7. (PMID: 10.1016/0014-2999(96)00403-78884238) ; Moore BA, Manthey CL, Johnson DL, Bauer AJ (2011) Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 141(4):1283–1292. https://doi.org/10.1053/j.gastro.2011.06.035. (PMID: 10.1053/j.gastro.2011.06.035217032133186882) ; De Winter BY, Bredenoord AJ, De Man JG, Moreels TG, Herman AG, Pelckmans PA (2002) Effect of inhibition of inducible nitric oxide synthase and guanylyl cyclase on endotoxin-induced delay in gastric emptying and intestinal transit in mice. Shock 18(2):125–131. (PMID: 10.1097/00024382-200208000-00006) ; De Winter BY, Bredenoord AJ, Van Nassauw L, De Man JG, De Schepper HU, Timmermans JP, Pelckmans PA (2009) Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: role of CGRP and TRPV1 receptors. Eur J Pharmacol 615(1–3):177–184. https://doi.org/10.1016/j.ejphar.2009.04.055. (PMID: 10.1016/j.ejphar.2009.04.05519445917) ; Nasser Y, Fernandez E, Keenan CM, Ho W, Oland LD, Tibbles LA, Schemann M, MacNaughton WK, Ruhl A, Sharkey KA (2006) Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am J Physiol Gastrointest Liver Physiol 291(5):G912-927. https://doi.org/10.1152/ajpgi.00067.2006. (PMID: 10.1152/ajpgi.00067.200616798727) ; France M, Bhattarai Y, Galligan JJ, Xu H (2012) Impaired propulsive motility in the distal but not proximal colon of BK channel beta1-subunit knockout mice. Neurogastroenterol Motil 24(9):e450-459. https://doi.org/10.1111/j.1365-2982.2012.01981.x. (PMID: 10.1111/j.1365-2982.2012.01981.x228305883425659) ; Swaminathan M, Hill-Yardin E, Ellis M, Zygorodimos M, Johnston LA, Gwynne RM, Bornstein JC (2016) Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J Vis Exp 108:53828. https://doi.org/10.3791/53828. (PMID: 10.3791/53828) ; Bernstein CN, Vidrich A (1994) Isolation, identification, and culture of normal mouse colonic glia. Glia 12(2):108–116. https://doi.org/10.1002/glia.440120204. (PMID: 10.1002/glia.4401202047532620) ; Linan-Rico A, Turco F, Ochoa-Cortes F, Harzman A, Needleman BJ, Arsenescu R, Abdel-Rasoul M, Fadda P, Grants I, Whitaker E, Cuomo R, Christofi FL (2016) Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm Bowel Dis 22(8):1812–1834. https://doi.org/10.1097/mib.0000000000000854. (PMID: 10.1097/mib.0000000000000854274160404993196) ; Coursin DB, Skrobik Y (2019) What is safe sedation in the ICU? N Engl J Med 380(26):2577–2578. https://doi.org/10.1056/NEJMe1906522. (PMID: 10.1056/NEJMe190652231242368) ; Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, Tesoro EP, Elswick RK (2002) The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 166(10):1338–1344. (PMID: 10.1164/rccm.2107138) ; Yoo JY, Kwak HJ, Kim YB, Park CK, Lee SY, Kim JY (2017) The effect of dexmedetomidine pretreatment on the median effective bolus dose of propofol for facilitating laryngeal mask airway insertion. J Anesth 31(1):11–17. https://doi.org/10.1007/s00540-016-2245-7. (PMID: 10.1007/s00540-016-2245-727572548) ; Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharmacy 7(2):27–31. https://doi.org/10.4103/0976-0105.177703. (PMID: 10.4103/0976-0105.177703) ; Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102. https://doi.org/10.1103/PhysRevLett.88.174102. (PMID: 10.1103/PhysRevLett.88.17410212005759) ; Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno MA, Laureys S, Tononi G, Massimini M (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5(198):198ra105. https://doi.org/10.1126/scitranslmed.3006294. (PMID: 10.1126/scitranslmed.300629423946194) ; Livingston EH, Passaro EP Jr (1990) Postoperative ileus. Dig Dis Sci 35(1):121–132. (PMID: 10.1007/BF01537233) ; Chassard D, Lansiaux S, Duflo F, Mion F, Bleyzac N, Debon R, Allaouchiche B (2002) Effects of subhypnotic doses of propofol on gastric emptying in volunteers. Anesthesiology 97(1):96–101. https://doi.org/10.1097/00000542-200207000-00014. (PMID: 10.1097/00000542-200207000-0001412131109) ; Asai T, Mapleson WW, Power I (1997) Differential effects of clonidine and dexmedetomidine on gastric emptying and gastrointestinal transit in the rat. Br J Anaesth 78(3):301–307. (PMID: 10.1093/bja/78.3.301) ; Memis D, Dokmeci D, Karamanlioglu B, Turan A, Ture M (2006) A comparison of the effect on gastric emptying of propofol or dexmedetomidine in critically ill patients: preliminary study. Eur J Anaesthesiol 23(8):700–704. https://doi.org/10.1017/S0265021506000512. (PMID: 10.1017/S026502150600051216805936) ; Herbert MK, Roth-Goldbrunner S, Holzer P, Roewer N (2002) Clonidine and dexmedetomidine potently inhibit peristalsis in the Guinea pig ileum in vitro. Anesthesiology 97(6):1491–1499. (PMID: 10.1097/00000542-200212000-00022) ; Mcclain JL, Fried DE, Gulbransen BD (2015) Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. CMGH Cell Mol Gastroenterol Hepatol 1(6):631–645. (PMID: 10.1016/j.jcmgh.2015.08.004) ; Sanders MK (2000) Postjunctional electrical mechanisms of enteric neurotransmission. Gut 47(Suppl 4):iv23. (PMID: 110769001766825) ; Bd V, Samsa LA, Andrew R, Satish M, Rashmi C, Liddle RA, Michael K (2014) An enteroendocrine cell—enteric glia connection revealed by 3D electron microscopy. PLoS ONE 9(2):e89881. (PMID: 10.1371/journal.pone.0089881) ; Aube A-C (2006) Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55(5):630–637. (PMID: 10.1136/gut.2005.067595) ; Hoff S, Zeller F, von Weyhern CW, Wegner M, Schemann M, Michel K, Ruhl A (2008) Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol 509(4):356–371. https://doi.org/10.1002/cne.21769. (PMID: 10.1002/cne.2176918512230) ; Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136(4):1349–1358. https://doi.org/10.1053/j.gastro.2008.12.058. (PMID: 10.1053/j.gastro.2008.12.05819250649) ; Broadhead MJ, Bayguinov PO, Okamoto T, Heredia DJ, Smith TK (2012) Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. J Physiol 590(2):335–350. https://doi.org/10.1113/jphysiol.2011.219519. (PMID: 10.1113/jphysiol.2011.21951922063626) ; Grubisic V, Parpura V (2017) Two modes of enteric gliotransmission differentially affect gut physiology. Glia 65(5):699–711. https://doi.org/10.1002/glia.23121. (PMID: 10.1002/glia.23121281687325357187)
  • Contributed Indexing: Keywords: Ca2+ response; Dexmedetomidine; Enteric glia; Gastrointestinal tract motility; Propofol
  • Substance Nomenclature: 0 (Hypnotics and Sedatives) ; 67VB76HONO (Dexmedetomidine) ; SY7Q814VUP (Calcium) ; YI7VU623SF (Propofol)
  • Entry Date(s): Date Created: 20210303 Date Completed: 20211012 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -