Zum Hauptinhalt springen

Climate-driven flyway changes and memory-based long-distance migration.

Gu, Z ; Pan, S ; et al.
In: Nature, Jg. 591 (2021-03-01), Heft 7849, S. 259-264
academicJournal

Titel:
Climate-driven flyway changes and memory-based long-distance migration.
Autor/in / Beteiligte Person: Gu, Z ; Pan, S ; Lin, Z ; Hu, L ; Dai, X ; Chang, J ; Xue, Y ; Su, H ; Long, J ; Sun, M ; Ganusevich, S ; Sokolov, V ; Sokolov, A ; Pokrovsky, I ; Ji, F ; Bruford, MW ; Dixon, A ; Zhan, X
Zeitschrift: Nature, Jg. 591 (2021-03-01), Heft 7849, S. 259-264
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2021
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-021-03265-0
Schlagwort:
  • Animals
  • Arctic Regions
  • Falconiformes genetics
  • Forecasting
  • Animal Migration
  • Falconiformes physiology
  • Geographic Mapping
  • Global Warming statistics & numerical data
  • Memory, Long-Term
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2021 Mar; Vol. 591 (7849), pp. 259-264. <i>Date of Electronic Publication: </i>2021 Mar 03.
  • MeSH Terms: Animal Migration* ; Geographic Mapping* ; Memory, Long-Term* ; Falconiformes / *physiology ; Global Warming / *statistics & numerical data ; Animals ; Arctic Regions ; Falconiformes / genetics ; Forecasting
  • Comments: Comment in: Nature. 2021 Mar;591(7849):203-204. (PMID: 33658671) ; Erratum in: Nature. 2021 Aug;596(7872):E4. (PMID: 34341539)
  • References: McRae, L. et al. Arctic Species Trend Index 2010. Tracking Trends in Arctic Wildlife (CAFF International Secretariat, 2010). ; Lameris, T. K. et al. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23, 4058–4067 (2017). (PMID: 10.1111/gcb.13684) ; Trautmann, S. in Bird Species (ed. Tietze, D. T.) 217–234 (Springer, 2018). ; Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018). (PMID: 10.1038/s41558-018-0312-9) ; Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018). (PMID: 2930201210.1126/science.aan4380) ; White, C. M., Cade, T. J. & Enderson, J. H. Peregrine Falcons of the World (Lynx, 2013). ; Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009). (PMID: 1966142110.1126/science.1172873) ; Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006). (PMID: 1655683810.1126/science.1120808) ; Brambilla, M., Rubolini, D. & Guidali, F. Factors affecting breeding habitat selection in a cliff-nesting peregrine Falco peregrinus population. J. Ornithol. 147, 428–435 (2006). (PMID: 10.1007/s10336-005-0028-2) ; Hausdorff, F. Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75, 428–433 (1914). (PMID: 10.1007/BF01563735) ; Pulido, F. The genetics and evolution of avian migration. Bioscience 57, 165–174 (2007). (PMID: 10.1641/B570211) ; Perdeck, A. C. An experiment on the ending of autumn migration in starlings. Ardea 52, 133–139 (1964). ; Delmore, K. E., Toews, D. P., Germain, R. R., Owens, G. L. & Irwin, D. E. The genetics of seasonal migration and plumage color. Curr. Biol. 26, 2167–2173 (2016). (PMID: 2747659910.1016/j.cub.2016.06.015) ; Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601 (1998). (PMID: 1019656710.1038/2830) ; Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994). (PMID: 792337810.1016/0092-8674(94)90400-6) ; Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688) ; Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001). (PMID: 1148399310.1038/35085068) ; Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989). (PMID: 254552410.1101/gad.3.5.612) ; Bartsch, D. et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992 (1995). (PMID: 852152110.1016/0092-8674(95)90213-9) ; Wieczorek, L. et al. Absence of Ca 2+ -stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory. Transl. Psychiatry 2, e126 (2012). (PMID: 22832970336526910.1038/tp.2012.50) ; Rosenegger, D., Wright, C. & Lukowiak, K. A quantitative proteomic analysis of long-term memory. Mol. Brain 3, 9 (2010). (PMID: 20331892286048710.1186/1756-6606-3-9) ; Ferguson, G. D. & Storm, D. R. Why calcium-stimulated adenylyl cyclases? Physiology (Bethesda) 19, 271–276 (2004). ; Zhang, M. et al. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J. Neurosci. 28, 4736–4744 (2008). (PMID: 18448650286525410.1523/JNEUROSCI.1177-08.2008) ; Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996). (PMID: 872597010.1016/S0959-4388(96)80082-1) ; Wauchope, H. S. et al. Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob. Change Biol. 23, 1085–1094 (2017). (PMID: 10.1111/gcb.13404) ; Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11, 20140944 (2015). (PMID: 25589489432115710.1098/rsbl.2014.0944) ; Brown, J. W. et al. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian peregrine falcons, Falco peregrinus. Mol. Ecol. 16, 327–343 (2007). (PMID: 1721734810.1111/j.1365-294X.2007.03151.x) ; Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008). (PMID: 18666834248631210.1371/journal.pbio.0060188) ; Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. Lond. B 278, 2848–2856 (2011). ; Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Res. 2, 115 (2013). (PMID: 24627781390715810.12688/f1000research.2-115.v1) ; Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012). (PMID: 10.1111/j.2041-210X.2012.00245.x) ; Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013). (PMID: 2399055910.1126/science.1237139) ; Trierweiler, C. et al. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. Lond. B 281, 20132897 (2014). ; Ambrosini, R., Møller, A. P. & Saino, N. A quantitative measure of migratory connectivity. J. Theor. Biol. 257, 203–211 (2009). (PMID: 1910877810.1016/j.jtbi.2008.11.019) ; Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC, 2015). ; López-López, D. P., García-Ripollés, C. & Urios, V. Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Curr. Zool. 60, 642–652 (2014). (PMID: 10.1093/czoolo/60.5.642) ; Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220 (2004). (PMID: 1520747610.1016/j.jtbi.2004.03.016) ; Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017). (PMID: 10.1111/2041-210X.12797) ; Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge Academic, 1988). ; Ganusevich, S. A. et al. Autumn migration and wintering areas of peregrine falcons Falco peregrinus nesting on the Kola Peninsula, northern Russia. Ibis 146, 291–297 (2004). (PMID: 10.1046/j.1474-919X.2004.00253.x) ; Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170) ; Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013). (PMID: 2324236710.1038/ng.2494) ; Damas, J. et al. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 27, 875–884 (2017). (PMID: 27903645541178110.1101/gr.213660.116) ; Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013). (PMID: 2352507610.1038/ng.2588) ; Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324) ; DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). (PMID: 21478889308346310.1038/ng.806) ; Rodríguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884 (2012). (PMID: 2263986810.1111/j.1755-0998.2012.03156.x) ; Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). (PMID: 17701901195083810.1086/519795) ; Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011). (PMID: 2116937810.1093/bioinformatics/btq706) ; Tang, H. et al. Genetic structure, self-identified race/ethnicity, and confounding in case–control association studies. Am. J. Hum. Genet. 76, 268–275 (2005). (PMID: 1562562210.1086/427888) ; Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017). (PMID: 2802415410.1038/ng.3748) ; Staab, P. R., Zhu, S., Metzler, D. & Lunter, G. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics 31, 1680–1682 (2015). (PMID: 25596205442683310.1093/bioinformatics/btu861) ; Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016). (PMID: 2658927810.1093/bioinformatics/btv684) ; Csilléry, K., François, O. & Blum, M. G. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012). (PMID: 10.1111/j.2041-210X.2011.00179.x) ; Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-3  https://cran.r-project.org/package=dismo (2020). ; Calenge, C. adhabitatHR: home range estimation. R package version 0.4.19  https://cran.r-project.org/package=adehabitatHR (2021). ; Fick, S. E. & Hijmans, R. J. WorldClim2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). (PMID: 10.1002/joc.5086) ; Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020). (PMID: 32665576736061710.1038/s41597-020-0552-1) ; Tarasov, P. E. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr. 27, 609–620 (2000). ; Borchers, H. W. pracma: practical numerical math functions. R package version 2.3.3 https://cran.r-project.org/package=pracma (2021). ; Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). (PMID: 21653522313721810.1093/bioinformatics/btr330) ; Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018). (PMID: 30375988620706210.1038/sdata.2018.214) ; Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007). (PMID: 17943131268772110.1038/nature06250) ; Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30 (2015). (PMID: 25928167440411710.1186/s12711-015-0105-9) ; Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014). (PMID: 25015648416692410.1093/molbev/msu211) ; Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007). (PMID: 17924348226566110.1086/521987) ; Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016). (PMID: 26829319478645410.1038/nbt.3432) ; François, O., Martins, H., Caye, K. & Schoville, S. D. Controlling false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469 (2016). (PMID: 2667184010.1111/mec.13513) ; Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013). (PMID: 23307896358400710.1534/genetics.112.147231) ; Bonhomme, M. et al. Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010). (PMID: 20855576294029010.1534/genetics.110.117275) ; Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015). (PMID: 10.1111/2041-210X.12382) ; Pan, S. et al. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai–Tibetan Plateau in a predatory bird. Mol. Ecol. 26, 2993–3010 (2017). (PMID: 2827761710.1111/mec.14090) ; Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014). (PMID: 25186741415260210.1523/JNEUROSCI.1860-14.2014) ; Yang, L. et al. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 42, D148–D155 (2014). (PMID: 2421495510.1093/nar/gkt1087) ; Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21–29 (2015). (PMID: 25559105437498610.1002/0471142727.mb2129s109) ; Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010). (PMID: 20019144281348210.1101/gr.097261.109) ; Barbato, M., Orozco-terWengel, P., Tapio, M. & Bruford, M. W. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 109 (2015). (PMID: 25852748436743410.3389/fgene.2015.00109) ; Pitt, D. et al. Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics. Evol. Appl. 12, 105–122 (2019). (PMID: 3062263910.1111/eva.12641) ; Carlzon, L., Karlsson, A., Falk, K., Liess, A. & Møller, S. Extreme weather affects peregrine falcon (Falco peregrinus tundrius) breeding success in South Greenland. Ornis Hungarica 26, 38–50 (2018). (PMID: 10.1515/orhu-2018-0014) ; Franke, A. et al. Status and trends of circumpolar peregrine falcon and gyrfalcon populations. Ambio 49, 762–783 (2020). (PMID: 3185848810.1007/s13280-019-01300-z)
  • Entry Date(s): Date Created: 20210304 Date Completed: 20210802 Latest Revision: 20230129
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -