Zum Hauptinhalt springen

Human OVCA2 and its homolog FSH3-induced apoptosis in Saccharomyces cerevisiae.

Gowsalya, R ; Ravi, C ; et al.
In: Current genetics, Jg. 67 (2021-08-01), Heft 4, S. 631-640
Online academicJournal

Titel:
Human OVCA2 and its homolog FSH3-induced apoptosis in Saccharomyces cerevisiae.
Autor/in / Beteiligte Person: Gowsalya, R ; Ravi, C ; Nachiappan, V
Link:
Zeitschrift: Current genetics, Jg. 67 (2021-08-01), Heft 4, S. 631-640
Veröffentlichung: New York Ny : Springer International ; <i>Original Publication</i>: [New York] Springer International., 2021
Medientyp: academicJournal
ISSN: 1432-0983 (electronic)
DOI: 10.1007/s00294-021-01171-6
Schlagwort:
  • Gene Expression Regulation, Fungal genetics
  • Humans
  • Membrane Potential, Mitochondrial genetics
  • Mitochondria genetics
  • Mitochondria metabolism
  • Reactive Oxygen Species metabolism
  • Saccharomyces cerevisiae genetics
  • Apoptosis genetics
  • Apoptosis Regulatory Proteins genetics
  • Cell Cycle genetics
  • Proteins genetics
  • Saccharomyces cerevisiae Proteins genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Curr Genet] 2021 Aug; Vol. 67 (4), pp. 631-640. <i>Date of Electronic Publication: </i>2021 Mar 13.
  • MeSH Terms: Apoptosis / *genetics ; Apoptosis Regulatory Proteins / *genetics ; Cell Cycle / *genetics ; Proteins / *genetics ; Saccharomyces cerevisiae Proteins / *genetics ; Gene Expression Regulation, Fungal / genetics ; Humans ; Membrane Potential, Mitochondrial / genetics ; Mitochondria / genetics ; Mitochondria / metabolism ; Reactive Oxygen Species / metabolism ; Saccharomyces cerevisiae / genetics
  • References: Abdelmoula-Souissi S, Delahodde A, Bolotin-Fukuhara M, Gargouri A, Mokdad-Gargouri R (2011) Cellular localization of human p53 expressed in the yeast Saccharomyces Cerevisiae: effect of NLSI deletion. Apoptosis 16:746–756. https://doi.org/10.1007/s10495-011-0607-z. (PMID: 10.1007/s10495-011-0607-z21553245) ; Amigoni L, Frigerio G, Martegani E, Colombo S (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16:fow016. https://doi.org/10.1093/femsyr/fow016. (PMID: 10.1093/femsyr/fow01626895787) ; Amigoni L, Martegani E, Colombo S (2013) Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2013:678473. https://doi.org/10.1155/2013/678473. (PMID: 10.1155/2013/678473240896303780702) ; Azizi AA, Gelpi E, Yang JW, Rupp B, Godwin AK, Slater C, Slavc I, Lubec G (2006) Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 241:235–249. https://doi.org/10.1016/j.canlet.2005.10.023. (PMID: 10.1016/j.canlet.2005.10.02316368187) ; Baxter SM, Rosenblum JS, Knutson S, Nelson MR, Montimurro JS, Di Gennaro JA, Speir JA, Burbaum JJ, Fetrow JS (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteomics 3:209–225. https://doi.org/10.1074/mcp.M300082-MCP200. (PMID: 10.1074/mcp.M300082-MCP20014645503) ; Bonomelli B, Martegani E, Colombo S (2020) Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 523:130–134. https://doi.org/10.1016/j.bbrc.2019.12.023. (PMID: 10.1016/j.bbrc.2019.12.02331837801) ; Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3. (PMID: 10.1016/0003-2697(76)90527-3) ; Bun JS, Slack MD, Schemenauer DE, Johnson RJ (2020) Comparative analysis of the human serine hydrolase OVCA2 to the model serine hydrolase homolog FSH1 from S. cerevisiae. PLoS ONE 15:e0230166. https://doi.org/10.1371/journal.pone.0230166. (PMID: 10.1371/journal.pone.0230166321822567077851) ; Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246. https://doi.org/10.1016/j.molcel.2006.12.021. (PMID: 10.1016/j.molcel.2006.12.02117244531) ; Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773. https://doi.org/10.1038/cdd.2009.219. (PMID: 10.1038/cdd.2009.21920075938) ; Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64. https://doi.org/10.3389/fonc.2012.00064. (PMID: 10.3389/fonc.2012.00064227376703380282) ; Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on cell death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4. (PMID: 10.1038/s41418-017-0012-4293624795864239) ; Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425. https://doi.org/10.1093/nar/20.6.1425. (PMID: 10.1093/nar/20.6.14251561104312198) ; Gowsalya R, Ravi C, Arul M, Nachiappan V (2019a) FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 112:1775–1784. https://doi.org/10.1007/s10482-019-01310-7. (PMID: 10.1007/s10482-019-01310-731363875) ; Gowsalya R, Ravi C, Kannan M, Nachiappan V (2019b) FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 19:foz017. https://doi.org/10.1093/femsyr/foz017. (PMID: 10.1093/femsyr/foz01730776074) ; Guaragnella N, Zdralević M, Antonacci L, Passarella S, Marra E, Giannattasio S (2012) The role of mitochondria in yeast programmed cell death. Front Oncol 2:70. https://doi.org/10.3389/fonc.2012.00070. (PMID: 10.3389/fonc.2012.00070227835463388595) ; Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507. https://doi.org/10.1083/jcb.200310014. (PMID: 10.1083/jcb.200310014149701892171996) ; Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691. https://doi.org/10.1038/nature02026. (PMID: 10.1038/nature0202614562095) ; Jeon BW, Kim KT, Chang SI, Kim HY (2002) Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae. J Biochem 131:693–699. https://doi.org/10.1093/oxfordjournals.jbchem.a003153. (PMID: 10.1093/oxfordjournals.jbchem.a00315311983076) ; Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880. https://doi.org/10.1038/sj.cdd.4401260. (PMID: 10.1038/sj.cdd.440126012867994) ; Karbowski M, Youle RJ (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663. https://doi.org/10.1038/nrm1697. (PMID: 10.1038/nrm169716025099) ; KhanMA CPB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:17326–17331. https://doi.org/10.1073/pnas.0508120102. (PMID: 10.1073/pnas.0508120102) ; Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 25:111–128. https://doi.org/10.1002/cm.970250202. (PMID: 10.1002/cm.9702502027686821) ; Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99. https://doi.org/10.1038/35083620. (PMID: 10.1038/3508362011452314) ; Ligr M, Madeo F, Fröhlich E, Hilt W, Fröhlich KU, Wolf DH (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 38:61–65. https://doi.org/10.1016/S0014-5793(98)01227-7. (PMID: 10.1016/S0014-5793(98)01227-7) ; Long JZ, Cravatt BF (2011) The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 111:6022–6063. https://doi.org/10.1021/cr200075y. (PMID: 10.1021/cr200075y216962173192302) ; Madeo F, Fröhlich E, Fröhlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734. https://doi.org/10.1083/jcb.139.3.729. (PMID: 10.1083/jcb.139.3.72993482892141703) ; Madeo F, Fröhlich M, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767. https://doi.org/10.1083/jcb.145.4.757. (PMID: 10.1083/jcb.145.4.757103304042133192) ; Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T, Kroemer G (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231. https://doi.org/10.1016/j.bbrc.2009.02.117. (PMID: 10.1016/j.bbrc.2009.02.11719250922) ; Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, Wissing S, Fröhlich KU (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41:208–216. https://doi.org/10.1007/s00294-002-0310-2. (PMID: 10.1007/s00294-002-0310-212172961) ; Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917. https://doi.org/10.1016/S1097-2765(02)00501-4. (PMID: 10.1016/S1097-2765(02)00501-411983181) ; Malakar D, Dey A, Basu A, Ghosh AK (2008) Antiapoptotic role of S-adenosyl-l-methionine against hydrochloric acid induced cell death in Saccharomyces cerevisiae. Biochim Biophys Acta 1780:937–947. https://doi.org/10.1016/j.bbagen.2008.03.014. (PMID: 10.1016/j.bbagen.2008.03.01418445488) ; Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1320–1327. https://doi.org/10.1016/j.bbamcr.2008.02.015. (PMID: 10.1016/j.bbamcr.2008.02.01518355456) ; Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G et al (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398. (PMID: 10.1074/jbc.M010498200) ; Mitsui K, Nakagawa D, Nakamura M, Okamoto T, Tsurugi K (2005) Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett 579:723–727. https://doi.org/10.1016/j.febslet.2004.12.051. (PMID: 10.1016/j.febslet.2004.12.05115670835) ; Muzaffar S, Chattoo BB (2017) Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 22:463–474. https://doi.org/10.1007/s10495-016-1330-6. (PMID: 10.1007/s10495-016-1330-628012059) ; Palermo V, Mangiapelo E, Piloto C, Pieri L, Muscolini M, Tuosto L, Mazzoni C (2013) p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 13:682–688. https://doi.org/10.1111/1567-1364.12067. (PMID: 10.1111/1567-1364.1206723875998) ; Parone PA, Martinou JC (2006) Mitochondrial fission and apoptosis: an ongoing trial. Biochim Biophys Acta 1763:522–530. https://doi.org/10.1016/j.bbamcr.2006.04.005. (PMID: 10.1016/j.bbamcr.2006.04.00516762428) ; Prowse AH, Vanderveer L, Milling SW, Pan ZZ, Dunbrack RL, Xu XX, Godwin AK (2002) OVCA2 is downregulated and degraded during retinoid-induced apoptosis. Int J Cancer 99:185–192. https://doi.org/10.1002/ijc.10334. (PMID: 10.1002/ijc.1033411979432) ; Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, Zelwer C, Janin J, Van Tilbeurgh H (2005) Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Sci 14:1350–1356. https://doi.org/10.1110/ps.051415905. (PMID: 10.1110/ps.051415905158026542253265) ; Ravi C, Gowsalya R, Nachiappan V (2019) Impaired GCR1 transcription resulted in defective inositol levels, vacuolar structure and autophagy in Saccharomyces cerevisiae. Current Genetics 65:995–1014. https://doi.org/10.1007/s00294-019-00954-2. (PMID: 10.1007/s00294-019-00954-230879088) ; Ramachandran G, Chidambaram R, Nachiappan V (2021) FSH1 encodes lysophospholipase activity in Saccharomyces cerevisiae. Biotechnol Lett 43:279–286. https://doi.org/10.1007/s10529-020-03004-x. (PMID: 10.1007/s10529-020-03004-x32920715) ; Rottenberg H, Wu S (1998) Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta 1404:393–404. https://doi.org/10.1016/S0167-4889(98)00088-3. (PMID: 10.1016/S0167-4889(98)00088-39739168) ; Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK (1996) Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res 56:1997–2002. (PMID: 8616839) ; Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD (2019) Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 169:235–245. https://doi.org/10.1093/toxsci/kfz037. (PMID: 10.1093/toxsci/kfz037310595746484886) ; Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446. https://doi.org/10.1038/17135. (PMID: 10.1038/171359989411) ; Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356:eaal3321. https://doi.org/10.1126/science.aal3321. (PMID: 10.1126/science.aal332128495876) ; Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419. (PMID: 10.1126/science.126041925613900) ; Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T et al (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974. https://doi.org/10.1083/jcb.200404138. (PMID: 10.1083/jcb.200404138153816872172025) ; Wysocki R, Kron SJ (2004) Yeast Cell Death During DNA Damage Arrest Is Independent of Caspase or Reactive Oxygen Species. J Cell Biol 166:311–316. https://doi.org/10.1083/jcb.200405016. (PMID: 10.1083/jcb.200405016152894932172262) ; Yosra K, Imed M, Agnes D, Fatma B, Ines YH, Raja MG, Ali G (2015) Overexpression of yeast thioredoxin TRX2 reduces p53-mediated cell death in yeast. Appl Microbiol Biotechnol 99:8619–8628. https://doi.org/10.1007/s00253-015-6886-5. (PMID: 10.1007/s00253-015-6886-5) ; Zaim J, Speina E, Kierzek AM (2005) Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 280:28–37. https://doi.org/10.1074/jbc.M404669200. (PMID: 10.1074/jbc.M40466920015494396)
  • Contributed Indexing: Keywords: Apoptosis; FSH3; OVCA2; Yeast cell death
  • Substance Nomenclature: 0 (Apoptosis Regulatory Proteins) ; 0 (FSH3 protein, S cerevisiae) ; 0 (OVCA2 protein, human) ; 0 (Proteins) ; 0 (Reactive Oxygen Species) ; 0 (Saccharomyces cerevisiae Proteins)
  • Entry Date(s): Date Created: 20210314 Date Completed: 20210830 Latest Revision: 20210830
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -