Zum Hauptinhalt springen

Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression.

Lees, DM ; Reynolds, LE ; et al.
In: Angiogenesis, Jg. 24 (2021-08-01), Heft 3, S. 471-482
Online academicJournal

Titel:
Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression.
Autor/in / Beteiligte Person: Lees, DM ; Reynolds, LE ; Pedrosa, AR ; Roy-Luzarraga, M ; Hodivala-Dilke, KM
Link:
Zeitschrift: Angiogenesis, Jg. 24 (2021-08-01), Heft 3, S. 471-482
Veröffentlichung: Dec. 2004- : Berlin : Springer ; <i>Original Publication</i>: London ; Philadelphia : Rapid Science Publishers,, 2021
Medientyp: academicJournal
ISSN: 1573-7209 (electronic)
DOI: 10.1007/s10456-021-09776-8
Schlagwort:
  • Amino Acid Substitution
  • Animals
  • Mice
  • Mice, Transgenic
  • Phosphorylation
  • Apoptosis
  • Carcinoma, Lewis Lung enzymology
  • Carcinoma, Lewis Lung genetics
  • Focal Adhesion Kinase 1 genetics
  • Focal Adhesion Kinase 1 metabolism
  • Mutation, Missense
  • Neoplasm Proteins genetics
  • Neoplasm Proteins metabolism
  • Neovascularization, Pathologic enzymology
  • Neovascularization, Pathologic genetics
  • Pericytes enzymology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Angiogenesis] 2021 Aug; Vol. 24 (3), pp. 471-482. <i>Date of Electronic Publication: </i>2021 Mar 17.
  • MeSH Terms: Apoptosis* ; Carcinoma, Lewis Lung* / enzymology ; Carcinoma, Lewis Lung* / genetics ; Focal Adhesion Kinase 1* / genetics ; Focal Adhesion Kinase 1* / metabolism ; Mutation, Missense* ; Neoplasm Proteins* / genetics ; Neoplasm Proteins* / metabolism ; Neovascularization, Pathologic* / enzymology ; Neovascularization, Pathologic* / genetics ; Pericytes / *enzymology ; Amino Acid Substitution ; Animals ; Mice ; Mice, Transgenic ; Phosphorylation
  • Comments: Erratum in: Angiogenesis. 2021 Jul 4;:. (PMID: 34218398)
  • References: Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. (PMID: 10.1016/j.devcel.2011.07.00121839917) ; Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464. (PMID: 16212810187172710.1215/S1152851705000232) ; Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 163(4):296–306. (PMID: 24530608397671810.1016/j.trsl.2014.01.011) ; von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629. (PMID: 10.1016/j.yexcr.2005.10.019) ; Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80. (PMID: 2216661710.1017/S1431927611012402) ; Hellstrom M, Gerhardt H, Kalen M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553. (PMID: 11331305219057310.1083/jcb.153.3.543) ; Chen M, Lei X, Shi C et al (2017) Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J Clin Invest 127(10):3689–3701. (PMID: 28846068561766310.1172/JCI94258) ; Ruan J, Luo M, Wang C et al (2013) Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 121(26):5192–5202. (PMID: 23632889369536310.1182/blood-2013-03-490763) ; Owens LV, Xu L, Craven RJ et al (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55(13):2752–2755. (PMID: 7796399) ; Schmitz KJ, Grabellus F, Callies R et al (2005) High expression of focal adhesion kinase (p125FAK) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome. Breast Cancer Res 7(2):R194-203. (PMID: 15743500106413110.1186/bcr977) ; Ji HF, Pang D, Fu SB et al (2013) Overexpression of focal adhesion kinase correlates with increased lymph node metastasis and poor prognosis in non-small-cell lung cancer. J Cancer Res Clin Oncol 139(3):429–435. (PMID: 2314364610.1007/s00432-012-1342-8) ; Tavora B, Batista S, Reynolds LE et al (2010) Endothelial FAK is required for tumour angiogenesis. EMBO Mol Med 2(12):516–528. (PMID: 21154724337734410.1002/emmm.201000106) ; Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14(9):598–610. (PMID: 25098269436586210.1038/nrc3792) ; Lechertier T, Hodivala-Dilke K (2012) Focal adhesion kinase and tumour angiogenesis. J Pathol 226(2):404–412. (PMID: 2198445010.1002/path.3018) ; Lee J, Borboa AK, Chun HB et al (2010) Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma. Cancer Res 70(24):10131–10140. (PMID: 21159635305922010.1158/0008-5472.CAN-10-2740) ; Corsi JM, Houbron C, Billuart P et al (2009) Autophosphorylation-independent and -dependent functions of focal adhesion kinase during development. J Biol Chem 284(50):34769–34776. (PMID: 19776009278733910.1074/jbc.M109.067280) ; Pedrosa AR, Bodrug N, Gomez-Escudero J et al (2019) Tumor angiogenesis is differentially regulated by phosphorylation of endothelial cell focal adhesion kinase tyrosines-397 and -861. Can Res 79(17):4371–4386. (PMID: 10.1158/0008-5472.CAN-18-3934) ; Tavora B, Reynolds LE, Batista S et al (2014) Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 514(7520):112–116. (PMID: 25079333453391610.1038/nature13541) ; Lechertier T, Reynolds LE, Kim H et al (2020) Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun 11(1):2810. (PMID: 32499572727265110.1038/s41467-020-16618-6) ; Wong PP, Munoz-Felix JM, Hijazi M et al (2020) Cancer burden is controlled by Mural cell-beta3-integrin regulated crosstalk with tumor cells. Cell 181(6):1346–1363. (PMID: 3247312610.1016/j.cell.2020.02.003) ; Viski C, Konig C, Kijewska M et al (2016) Endosialin-expressing pericytes promote metastatic dissemination. Can Res 76(18):5313–5325. (PMID: 10.1158/0008-5472.CAN-16-0932) ; Murgai M, Ju W, Eason M et al (2017) KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med 23(10):1176–1190. (PMID: 28920957572439010.1038/nm.4400) ; Baluk P, Lee CG, Link H et al (2004) Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways. Am J Pathol 165(4):1071–1085. (PMID: 15466375161864610.1016/S0002-9440(10)63369-X) ; Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52. (PMID: 15215160161854010.1016/S0002-9440(10)63273-7) ; Gilbert LA, Hemann MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143(3):355–366. (PMID: 21029859297235310.1016/j.cell.2010.09.043) ; Cao Z, Ding BS, Guo P et al (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365. (PMID: 24651014401792110.1016/j.ccr.2014.02.005) ; Armulik A, Genove G, Mae M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. (PMID: 2094462710.1038/nature09522) ; Chen J, Luo Y, Hui H et al (2017) CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci USA 114(36):E7622–E7631. (PMID: 28827364559469610.1073/pnas.1710848114) ; Aplin AC, Fogel E, Nicosia RF (2010) MCP-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13(3):219–226. (PMID: 20571857296728110.1007/s10456-010-9179-8) ; Gazzaniga S, Bravo AI, Guglielmotti A et al (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127(8):2031–2041. (PMID: 1746073610.1038/sj.jid.5700827) ; Cranford TL, Velazquez KT, Enos RT et al (2017) Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol Ther 18(2):85–93. (PMID: 28075192536299710.1080/15384047.2016.1276135) ; Roberts WG, Ung E, Whalen P et al (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Can Res 68(6):1935–1944. (PMID: 10.1158/0008-5472.CAN-07-5155) ; Duxbury MS, Ito H, Zinner MJ et al (2004) Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 135(5):555–562. (PMID: 1511859310.1016/j.surg.2003.10.017) ; Stokes JB, Adair SJ, Slack-Davis JK et al (2011) Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 10(11):2135–2145. (PMID: 21903606321327310.1158/1535-7163.MCT-11-0261) ; Alexopoulou AN, Lees DM, Bodrug N et al (2017) Focal Adhesion Kinase (FAK) tyrosine 397E mutation restores the vascular leakage defect in endothelium-specific FAK-kinase dead mice. J Pathol 242(3):358–370. (PMID: 28444899551844410.1002/path.4911) ; Huang FJ, You WK, Bonaldo P et al (2010) Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol 344(2):1035–1046. (PMID: 20599895319774410.1016/j.ydbio.2010.06.023) ; Cooke VG, LeBleu VS, Keskin D et al (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. (PMID: 22264789399952210.1016/j.ccr.2011.11.024) ; Yoshida S, Kawai H, Eguchi T et al (2019) Tumor angiogenic inhibition triggered necrosis (TAITN) in oral cancer. Cells 8:7. (PMID: 10.3390/cells8070761) ; Ramanujan S, Koenig GC, Padera TP et al (2000) Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Can Res 60(5):1442–1448. ; Acharyya S, Oskarsson T, Vanharanta S et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. (PMID: 22770218352801910.1016/j.cell.2012.04.042) ; Armstrong LC, Bjorkblom B, Hankenson KD et al (2002) Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13(6):1893–1905. (PMID: 1205805711761210.1091/mbc.e01-09-0066) ; Li M, Knight DA, As L et al (2013) A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology. 2(7):25474. (PMID: 10.4161/onci.25474) ; Yang X, Qiao D, Meyer K et al (2012) Angiogenesis induced by signal transducer and activator of transcription 5A (STAT5A) is dependent on autocrine activity of proliferin. J Biol Chem 287(9):6490–6502. (PMID: 2219935010.1074/jbc.M111.254631) ; Carpen T, Sorsa T, Jouhi L et al (2019) High levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the serum are associated with poor prognosis in HPV-negative squamous cell oropharyngeal cancer. Cancer Immunol Immunother 68(8):1263–1272. (PMID: 31240326668257110.1007/s00262-019-02362-4) ; Takahara M, Nagato T, Komabayashi Y et al (2013) Soluble ICAM-1 secretion and its functional role as an autocrine growth factor in nasal NK/T cell lymphoma cells. Exp Hematol 41(8):711–718. (PMID: 2358364010.1016/j.exphem.2013.03.009) ; Tang Z, Gillatt D, Rowe E et al (2019) IGFBP-2 acts as a tumour suppressor and plays a role in determining chemosensitivity in bladder cancer cells. Oncotarget 10(66):7043–7057. (PMID: 31903164692502610.18632/oncotarget.27355) ; Folkman J (2006) Antiangiogenesis in cancer therapy–endostatin and its mechanisms of action. Exp Cell Res 312(5):594–607. (PMID: 1637633010.1016/j.yexcr.2005.11.015) ; Vazquez F, Hastings G, Ortega MA et al (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274(33):23349–23357. (PMID: 1043851210.1074/jbc.274.33.23349) ; Sandilands E, Serrels B, McEwan DG et al (2011) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 14(1):51–60. (PMID: 2213857510.1038/ncb2386) ; Beausejour M, Noel D, Thibodeau S et al (2012) Integrin/Fak/Src-mediated regulation of cell survival and anoikis in human intestinal epithelial crypt cells: selective engagement and roles of PI3-K isoform complexes. Apoptosis 17(6):566–578. (PMID: 22402981334518110.1007/s10495-012-0713-6) ; Lim ST, Chen XL, Tomar A et al (2010) Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J Biol Chem 285(28):21526–21536. (PMID: 20442405289842810.1074/jbc.M110.129999) ; Tavora B, Batista S, Alexopoulou AN et al (2014) Generation of point-mutant FAK knockin mice. Genesis 52(11):907–915. (PMID: 2524269810.1002/dvg.22823) ; Tigges U, Welser-Alves JV, Boroujerdi A et al (2012) A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 84(1):74–80. (PMID: 22484453374813810.1016/j.mvr.2012.03.008) ; Reynolds LE, D’Amico G, Lechertier T et al (2017) Dual role of pericyte alpha6beta1-integrin in tumour blood vessels. J Cell Sci 130(9):1583–1595. (PMID: 282892675450232) ; Baker M, Robinson SD, Lechertier T et al (2012) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7(1):89–104. (PMID: 10.1038/nprot.2011.435)
  • Grant Information: 28990 United Kingdom CRUK_ Cancer Research UK; C82181/A12007 United Kingdom CRUK_ Cancer Research UK
  • Contributed Indexing: Keywords: Angiogenesis; Cancer; Focal adhesion kinase (FAK); Pericytes
  • Substance Nomenclature: 0 (Neoplasm Proteins) ; EC 2.7.10.2 (Focal Adhesion Kinase 1) ; EC 2.7.10.2 (Ptk2 protein, mouse)
  • Entry Date(s): Date Created: 20210317 Date Completed: 20220114 Latest Revision: 20240210
  • Update Code: 20240210
  • PubMed Central ID: PMC8292267

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -