Zum Hauptinhalt springen

Simulating reference crop evapotranspiration with different climate data inputs using Gaussian exponential model.

Jia, Y ; Wang, F ; et al.
In: Environmental science and pollution research international, Jg. 28 (2021-08-01), Heft 30, S. 41317-41336
Online academicJournal

Titel:
Simulating reference crop evapotranspiration with different climate data inputs using Gaussian exponential model.
Autor/in / Beteiligte Person: Jia, Y ; Wang, F ; Li, P ; Huo, S ; Yang, T
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 28 (2021-08-01), Heft 30, S. 41317-41336
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2021
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-021-13453-0
Schlagwort:
  • China
  • Normal Distribution
  • Machine Learning
  • Meteorology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2021 Aug; Vol. 28 (30), pp. 41317-41336. <i>Date of Electronic Publication: </i>2021 Mar 30.
  • MeSH Terms: Machine Learning* ; Meteorology* ; China ; Normal Distribution
  • References: Abdullah SS, Maleka MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference crop evapotranspiration. J Hydrol 527:184–195. (PMID: 10.1016/j.jhydrol.2015.04.073) ; Allen RG, Pereira, LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop evapotranspiration. FAO Irrigation and Drainage Paper No. 56 (Rome, Italy). ; Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag 98:899–920. (PMID: 10.1016/j.agwat.2010.12.015) ; Antonopoulos VZ, Antonopoulos AV (2017) Daily reference crop evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput Electron Agric 132:86–96. (PMID: 10.1016/j.compag.2016.11.011) ; Chen ZJ, Zhu ZC, Jiang H, Sun SJ (2020) Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol 591:125286. (PMID: 10.1016/j.jhydrol.2020.125286) ; Desideri U, Zepparelli F, Morettini V, Garroni E (2013) Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations. Appl Energy 102:765–784. (PMID: 10.1016/j.apenergy.2012.08.033) ; Elias CL, Calapez AR, Almeida SFP, Chessman B, Simoes N, Feio MJ (2016) Predicting reference conditions for river bioassessment by incorporating boosted trees in the environmental filters method. Ecol Indic 69:239–251. (PMID: 10.1016/j.ecolind.2016.04.027) ; Emamgolizadeh S, Bateni SM, Shahsavani D, Ashrafi T, Gorbani H (2015) Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS). J Hydrol 529(3):1590–1600. (PMID: 10.1016/j.jhydrol.2015.08.025) ; Fan JL, Wu LF, Zhang FC, Cai HJ, Zeng WZ, Wang XK, Zou HY (2019) Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: a review and case study in China. Renew Sust Energ Rev 100:186–212. (PMID: 10.1016/j.rser.2018.10.018) ; Feng Y, Peng Y, Cui N, Gong D, Zhang K (2017a) Modeling reference crop evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput Electron Agric 136:71–78. (PMID: 10.1016/j.compag.2017.01.027) ; Feng Y, Cui NB, Gong DZ, Zhang QW, Zhao L (2017b) Evaluation of random forests and generalized regression neural networks for daily reference crop evapotranspiration modelling. Agric Water Manag 193:163–173. (PMID: 10.1016/j.agwat.2017.08.003) ; Feng Y, Jia Y, Cui N, Zhao L, Li C, Gong D (2017c) Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agric Water Manag 181:1–9. (PMID: 10.1016/j.agwat.2016.11.010) ; Feng Y, Jia Y, Zhang Q, Gong D, Cui N (2018) National-scale assessment of pan evaporation models across different climatic zones of China. J Hydrol 564:314–328. (PMID: 10.1016/j.jhydrol.2018.07.013) ; Feng Y, Cui N, Hao W, Gao L, Gong D (2019a) Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 338:67–77. (PMID: 10.1016/j.geoderma.2018.11.044) ; Feng Y, Gong D, Zhang Q, Jiang S, Zhao L, Cui N (2019b) Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers Manag 198:111780. (PMID: 10.1016/j.enconman.2019.111780) ; Feng Y, Gong D, Jiang S, Zhao L, Cui N (2020a) National-scale development and calibration of empirical models for predicting daily global solar radiation in China. Energy Convers Manag 203:112236. (PMID: 10.1016/j.enconman.2019.112236) ; Feng Y, Hao W, Li H, Cui N, Gong D, Gao L (2020b) Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renew Sust Energ Rev 118:109393. (PMID: 10.1016/j.rser.2019.109393) ; Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI (2019) Estimation of reference crop evapotranspiration in Brazil with limited meteorological data using ANN and SVM–a new approach. J Hydrol 572:556–570. (PMID: 10.1016/j.jhydrol.2019.03.028) ; Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232. (PMID: 10.1214/aos/1013203451) ; Gocic M, Petković D, Shamshirband S, Kamsin A (2016) Comparative analysis of reference crop evapotranspiration equations modelling by extreme learning machine. Comput Electron Agric 127:56–63. (PMID: 10.1016/j.compag.2016.05.017) ; Gonzalez del Cerro RT, Subathra MSP, Manoj KN, Verrastro S, Thomas GS (2020) Modelling the daily reference evapotranspiration in semi-arid region of South India: a case study comparing ANFIS and empirical models. Information Processing in Agriculture. ; Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. (PMID: 10.1016/j.neucom.2005.12.126) ; Huang GB, Ding XJ, Zhou HM (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163. (PMID: 10.1016/j.neucom.2010.02.019) ; Israeli A, Rokach L, Shabtai A (2019) Constraint learning based gradient boosting trees. Expert Syst Appl 128:287–300. (PMID: 10.1016/j.eswa.2019.03.011) ; Jensen MC (1968) The performance of mutual funds in the period 1945–1964. J Financ 23:389–416. (PMID: 10.1111/j.1540-6261.1968.tb00815.x) ; Jovic S, Nedeljkovic B, Golubovic Z, Kostic N (2018) Evolutionary algorithm for reference crop evapotranspiration analysis. Comput Electron Agric 150:1–4. (PMID: 10.1016/j.compag.2018.04.003) ; Kisi O (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:2449–2460. (PMID: 10.1002/hyp.6837) ; Kisi O (2016) Modeling reference crop evapotranspiration using three different heuristic regression approaches. Agric Water Manag 169:162–172. (PMID: 10.1016/j.agwat.2016.02.026) ; Kisi O, Cimen M (2009) Evapotranspiration modeling using support vector machines. Hydrol Sci J 54(5):918–928. (PMID: 10.1623/hysj.54.5.918) ; Kisi O, Sanikhani H, Zounemat-Kermani M, Niazi F (2015) Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput Electron Agric 115:66–77. (PMID: 10.1016/j.compag.2015.04.015) ; Ladlani I, Houichi L, Djemili L, Heddam S, Belouz K (2014) Estimation of daily reference crop evapotranspiration (ET0) in the north of Algeria using adaptive neurofuzzy inference system (ANFIS) and multiple linear regression (MLR) models: a comparative study. Arab J Sci Eng 39:5959–5969. (PMID: 10.1007/s13369-014-1151-2) ; Landeras G, Ortiz BA, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference crop evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95(5):553–565. (PMID: 10.1016/j.agwat.2007.12.011) ; Lesser B, Mucke M, Gansterer WW (2011) Effects of reduced precision on floating-point SVM classification accuracy. Procedia Comp Sci 4:508–517. (PMID: 10.1016/j.procs.2011.04.053) ; Liu C, Zheng D, Zhao L, Liu C (2014) Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients. Biomed Mater Eng 24:271–277. ; Mehdizadeh S (2018) Estimation of daily reference crop evapotranspiration (ETo) using artificial intelligence methods: offering a new approach for lagged ETo data-based modeling. J Hydrol 559:794–812. (PMID: 10.1016/j.jhydrol.2018.02.060) ; Qiu RJ, Wang YK, Wang D, Qiu WJ, Wu JC, Tao WY (2020) Water temperature forecasting based on modified artificial neural network methods: two cases of the Yangtze River. Sci Total Environ 737:1–12. (PMID: 10.1016/j.scitotenv.2020.139729) ; Quinlan JR (1992) Learning with continuous classes, in Proceedings of the 5 th Australian Joint Conference on Artificial Intelligence, 343–348. ; Reis MM, da Silva AJ, Junior JZ, Santos LDT, Azevedo AM, Lopes ÉMG (2019) Empirical and learning machine approaches to estimating reference crop evapotranspiration based on temperature data. Comput Electron Agric 165:104937. (PMID: 10.1016/j.compag.2019.104937) ; Saggi MK, Jain S (2019) Reference crop evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput Electron Agric 156:387–398. (PMID: 10.1016/j.compag.2018.11.031) ; Shen XJ, Liu BH, Xue ZS, Jiang M, Lu XG, Zhang Q (2019) Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci Total Environ 666(20):1169–1177. (PMID: 10.1016/j.scitotenv.2019.02.265) ; Shiri J, Kisi O, Landeras G, Javier Lopez J, Nazemi AH, Stuyt LCPM (2012) Daily reference crop evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414:302–316. (PMID: 10.1016/j.jhydrol.2011.11.004) ; Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference crop evapotranspiration from limited inputs in Iran. Comput Electron Agric 108:230–241. (PMID: 10.1016/j.compag.2014.08.007) ; Shiri J, Marti P, Karimi S, Landeras D (2019) Data splitting strategies for improving data driven models for reference crop evapotranspiration estimation among similar stations. Comput Electron Agric 162:70–81. (PMID: 10.1016/j.compag.2019.03.030) ; Tabari H, Kisi O, Ezani A, Talaee PH (2012) SVM, ANFIS, regression and climate based models for reference crop evapotranspiration modeling using limited climatic data in a semi–arid highland environment. J Hydrol 444–445(10):78–89. (PMID: 10.1016/j.jhydrol.2012.04.007) ; Tang D, Feng Y, Gong D, Hao W, Cui N (2018) Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Comput Electron Agric 152:375–384. (PMID: 10.1016/j.compag.2018.07.029) ; Tian, H., Zhao, Y. Q., Luo, M., He Q. Q., Han, Y., Zeng, Z. L., 2020. Estimating PM2.5 from multisource data: a comparison of different machine learning models in the Pearl River Delta of China. 2021, 35: 100740. ; Wang Y, Witten IH (1997) Inducing model trees for continuous classes, In Proceedings of the ninth European conference on machine learning, 128–137. ; Wang S, Lian JJ, Peng YZ, Hu BQ, Chen HS (2019) Generalized reference evapotranspiration models with limited climatic data based on random forestand gene expression programming in Guangxi, China. Agric Water Manag 221:220–230. ; Zhang QW, Cui NB, Feng Y, Jia Y, Li Z, Gong DZ (2018) Comparative analysis of global solar radiation models in different regions of China. Adv Meteorol 2018:1–21. ; Zheng MG, Hu SY, Liu XW, Wang W, Yin XC, Zheng L, Wang L, Lou YH (2019) Levels and distribution of synthetic musks in farmland soils from the three northeast provinces of China. Ecotoxicol Environ Saf 172:303–307. (PMID: 10.1016/j.ecoenv.2019.01.100) ; Zhou L, Wang Y, Jia QY, Li RP, Zhou MZ, Zhou GS (2019) Evapotranspiration over a rainfed maize field in northeast China: how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area. Agric Water Manag 221(20):528–546. ; Zhu SL, Heddam S, Nyarko EK, Hadzima-Nyarko M, Piccolroaz S, Wu SQ (2019a) Modelling daily water temperature for rivers: comparison between adaptive neurofuzzy inference systems and artificial neural networks models. Environ Sci Pollut Res 26:402–420. (PMID: 10.1007/s11356-018-3650-2) ; Zhu SL, Nyarko EK, Hadzima-Nyarko M, Heddam S, Wu SQ (2019b) Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ 7:e7065. (PMID: 10.7717/peerj.7065)
  • Grant Information: 2020-64 the Water Conservancy Research and Extension Project of Hebei Province
  • Contributed Indexing: Keywords: Gaussian exponential model; Limited climatic data; Local and regional scenarios; Machine learning models; Reference crop evapotranspiration
  • Entry Date(s): Date Created: 20210330 Date Completed: 20210811 Latest Revision: 20210811
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -