Zum Hauptinhalt springen

Immunology of Aging: the Birth of Inflammaging.

Fulop, T ; Larbi, A ; et al.
In: Clinical reviews in allergy & immunology, Jg. 64 (2023-04-01), Heft 2, S. 109-122
Online academicJournal

Titel:
Immunology of Aging: the Birth of Inflammaging.
Autor/in / Beteiligte Person: Fulop, T ; Larbi, A ; Pawelec, G ; Khalil, A ; Cohen, AA ; Hirokawa, K ; Witkowski, JM ; Franceschi, C
Link:
Zeitschrift: Clinical reviews in allergy & immunology, Jg. 64 (2023-04-01), Heft 2, S. 109-122
Veröffentlichung: Totowa, NJ : Humana Press, c1995-, 2023
Medientyp: academicJournal
ISSN: 1559-0267 (electronic)
DOI: 10.1007/s12016-021-08899-6
Schlagwort:
  • Humans
  • Pregnancy
  • Female
  • Longevity
  • Parturition
  • Inflammation
  • Aging physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Clin Rev Allergy Immunol] 2023 Apr; Vol. 64 (2), pp. 109-122. <i>Date of Electronic Publication: </i>2021 Sep 18.
  • MeSH Terms: Inflammation* ; Aging* / physiology ; Humans ; Pregnancy ; Female ; Longevity ; Parturition
  • References: Dziechciaż M, Filip R (2014) Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging. Ann Agric Environ Med 21:835–838. https://doi.org/10.5604/12321966.1129943. (PMID: 10.5604/12321966.112994325528930) ; Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17:205–220. https://doi.org/10.1007/s10522-015-9584-x. (PMID: 10.1007/s10522-015-9584-x25991473) ; da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112. https://doi.org/10.1016/j.arr.2016.06.005. (PMID: 10.1016/j.arr.2016.06.005273532575991498) ; Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 191:111316. https://doi.org/10.1016/j.mad.2020.111316. (PMID: 10.1016/j.mad.2020.111316326931057603428) ; López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039. (PMID: 10.1016/j.cell.2013.05.039237468383836174) ; Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x. (PMID: 10.1111/j.1749-6632.2000.tb06651.x10911963) ; Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4. (PMID: 10.1038/s41574-018-0059-430046148) ; Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4-9. https://doi.org/10.1093/gerona/glu057. (PMID: 10.1093/gerona/glu05724833586) ; Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35. https://doi.org/10.1016/j.smim.2018.09.003. (PMID: 10.1016/j.smim.2018.09.00330287177) ; Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME (2020) The interplay between immunosenescence and age-related diseases. Semin Immunopathol 42:545–557. https://doi.org/10.1007/s00281-020-00806-z. (PMID: 10.1007/s00281-020-00806-z327479777398288) ; Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP (2019) Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis 10:367–382. https://doi.org/10.14336/AD.2018.0324. (PMID: 10.14336/AD.2018.0324310114836457053) ; Royce GH, Brown-Borg HM, Deepa SS (2019) The potential role of necroptosis in inflammaging and aging. Geroscience 41:795–811. https://doi.org/10.1007/s11357-019-00131-w. (PMID: 10.1007/s11357-019-00131-w317210336925091) ; Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G (2016) Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz) 64:111–126. https://doi.org/10.1007/s00005-015-0377-3. (PMID: 10.1007/s00005-015-0377-326658771) ; Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci 20(18):4472. https://doi.org/10.3390/ijms20184472. (PMID: 10.3390/ijms20184472315100916769561) ; Chen G, Yung R (2019) Meta-inflammaging at the crossroad of geroscience. Aging Med (Milton) 2:157–161. https://doi.org/10.1002/agm2.12078. (PMID: 10.1002/agm2.1207831942529) ; Müller L, Di Benedetto S, Pawelec G (2019) The immune system and its dysregulation with aging. Subcell Biochem 91:21–43. https://doi.org/10.1007/978-981-13-3681-2_2. (PMID: 10.1007/978-981-13-3681-2_230888648) ; Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Kennedy BK, Larbi A, Lemaître JF, Liu GH, Maier AB, Morais JA, Nóbrega OT, Moskalev A, Rikkert MO, Seluanov A, Senior AM, Ukraintseva S, Vanhaelen Q, Witkowski J, Cohen AA (2020) The conundrum of human immune system “senescence.” Mech Ageing Dev 192:111357. https://doi.org/10.1016/j.mad.2020.111357. (PMID: 10.1016/j.mad.2020.111357329495947494491) ; Xu W, Wong G, Hwang YY, Larbi A (2020) The untwining of immunosenescence and aging. Semin Immunopathol 42:559–572. https://doi.org/10.1007/s00281-020-00824-x. (PMID: 10.1007/s00281-020-00824-x331657167665974) ; Allen JC, Toapanta FR, Chen W, Tennant SM (2020) Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 38:8264–8272. https://doi.org/10.1016/j.vaccine.2020.11.002. (PMID: 10.1016/j.vaccine.2020.11.002332291087719605) ; Salminen A, Kaarniranta K, Kauppinen A (2019) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 76:1901–1918. https://doi.org/10.1007/s00018-019-03048-x. (PMID: 10.1007/s00018-019-03048-x307885166478639) ; Drew W, Wilson DV, Sapey E (2018) Inflammation and neutrophil immunosenescence in health and disease: targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol 105:70–77. https://doi.org/10.1016/j.exger.2017.12.020. (PMID: 10.1016/j.exger.2017.12.02029288715) ; Moskalev A, Stambler I, Caruso C (2020) Innate and adaptive immunity in aging and longevity: the foundation of resilience. Aging Dis 11:1363–1373. https://doi.org/10.14336/AD.2020.0603. (PMID: 10.14336/AD.2020.0603332690947673842) ; Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19:10–19. https://doi.org/10.1038/s41590-017-0006-x. (PMID: 10.1038/s41590-017-0006-x29242543) ; Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341. https://doi.org/10.1016/j.smim.2012.04.008. (PMID: 10.1016/j.smim.2012.04.00822560929) ; Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM (2009) Shaw AC. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333. https://doi.org/10.1016/j.it.2009.05.004. (PMID: 10.1016/j.it.2009.05.004195415354067971) ; Bandaranayake T, Shaw AC (2016) Clin Geriatr Med 32:415–432. https://doi.org/10.1016/j.cger.2016.02.007. (PMID: 10.1016/j.cger.2016.02.007273940146986475) ; Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102:977–988. https://doi.org/10.1189/jlb.3RI0716-335R. (PMID: 10.1189/jlb.3RI0716-335R287334625597513) ; Goronzy JJ, Weyand CM (2019) Mechanisms underlying T cell ageing. Nat Rev Immunol 19:573–583. https://doi.org/10.1038/s41577-019-0180-1. (PMID: 10.1038/s41577-019-0180-1311865487584388) ; Wong GCL, Strickland MC, Larbi A (2020) Changes in T cell homeostasis and vaccine responses in old age. Interdiscip Top Gerontol Geriatr 43:36–55. https://doi.org/10.1159/000504487. (PMID: 10.1159/00050448732294651) ; Saavedra D, Fuertes SA, Suárez GM, González A, Lorenzo-Luaces P, García B, Aznar E, Mazorra Z, Crombet T, Speiser DE, Lage A (2019) Biomodulina T partially restores immunosenescent CD4 and CD8 T cell compartments in the elderly. Exp Gerontol 124:110633. https://doi.org/10.1016/j.exger.2019.110633. (PMID: 10.1016/j.exger.2019.11063331207285) ; Alves AS, Bueno V (2019) Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes. Einstein (Sao Paulo). 17(2):eRB4733.  https://doi.org/10.31744/einstein_journal/2019RB4733. ; Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127:538–543. https://doi.org/10.1016/j.mad.2006.01.011. (PMID: 10.1016/j.mad.2006.01.01116513159) ; Larbi A, Fulop T (2014) From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35. https://doi.org/10.1002/cyto.a.22351. (PMID: 10.1002/cyto.a.2235124124072) ; Hazeldine J, Lord JM (2015) Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 16:187–201. https://doi.org/10.1007/s10522-014-9514-3. (PMID: 10.1007/s10522-014-9514-325009085) ; Montgomery RR, Shaw AC (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol 98:937–943. https://doi.org/10.1189/jlb.5MR0315-104R. (PMID: 10.1189/jlb.5MR0315-104R261880784661037) ; Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513. https://doi.org/10.1016/j.coi.2010.05.003. (PMID: 10.1016/j.coi.2010.05.003206677034034446) ; Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226. https://doi.org/10.1111/j.1474-9728.2004.00110.x. (PMID: 10.1111/j.1474-9728.2004.00110.x15268755) ; Fülöp T Jr, Fóris G, Wórum I, Leövey A (1985) Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 61:425–432. (PMID: 29949261577299) ; Fülöp T, Fóris G, Wórum I, Leövey A (1984) Age-dependent changes of the Fc gamma-receptor-mediated functions of human monocytes. Int Arch Allergy Appl Immunol 74:76–79. https://doi.org/10.1159/000233520. (PMID: 10.1159/0002335206231251) ; Tomar N, De RK (2014) A brief outline of the immune system. Methods Mol Biol 1184:3–12. https://doi.org/10.1007/978-1-4939-1115-8_1. (PMID: 10.1007/978-1-4939-1115-8_125048116) ; Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33-40. https://doi.org/10.1016/j.jaci.2009.09.017. (PMID: 10.1016/j.jaci.2009.09.01720061006) ; Hirokawa K, Utsuyama M, Kasai M, Kurashima C, Ishijima S, Zeng YX (1994) Immunol Lett 40:269–277. https://doi.org/10.1016/0165-2478(94)00065-4. (PMID: 10.1016/0165-2478(94)00065-47959895) ; Thapa P, Farber DL (2019) The role of the thymus in the immune response. Thorac Surg Clin 29:123–131. https://doi.org/10.1016/j.thorsurg.2018.12.001. (PMID: 10.1016/j.thorsurg.2018.12.001309279936446584) ; Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 17:2. https://doi.org/10.1186/s12979-020-0173-8.6. (PMID: 10.1186/s12979-020-0173-8.6319886496971920) ; Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J, Caruso C, Franceschi C, Fülöp T, Gupta S, Mariani E, Mocchegiani E, Solana R (2002) T cells and aging, January 2002 update. Front Biosci 1(7):d1056–d1183. https://doi.org/10.2741/a831. (PMID: 10.2741/a831) ; Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144. https://doi.org/10.1073/pnas.1409155111. (PMID: 10.1073/pnas.1409155111251571374246948) ; Di Benedetto S, Derhovanessian E, Steinhagen-Thiessen E, Goldeck D, Müller L, Pawelec G (2015) Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16:631–643. https://doi.org/10.1007/s10522-015-9563-2. (PMID: 10.1007/s10522-015-9563-225732234) ; Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19. https://doi.org/10.1007/s10522-015-9578-8. (PMID: 10.1007/s10522-015-9578-825921609) ; Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30(1):16–22. https://doi.org/10.3109/09513590.2013.852531. (PMID: 10.3109/09513590.2013.85253124219599) ; Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9. https://doi.org/10.1016/j.exger.2017.10.024. (PMID: 10.1016/j.exger.2017.10.02429111233) ; Pera A, Campos C, López N, Hassouneh F, Alonso C, Tarazona R, Solana R (2015) Immunosenescence: implications for response to infection and vaccination in older people. Maturitas 82:50–55. https://doi.org/10.1016/j.maturitas.2015.05.004. (PMID: 10.1016/j.maturitas.2015.05.00426044074) ; Gustafson CE, Kim C, Weyand CM, Goronzy JJ (2020) J Allergy Clin Immunol 145:1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017. (PMID: 10.1016/j.jaci.2020.03.017323866557198995) ; Andrew MK, Bowles SK, Pawelec G, Haynes L, Kuchel GA, McNeil SA, McElhaney JE (2019) Influenza vaccination in older adults: recent innovations and practical applications. Drugs Aging 36:29–37. https://doi.org/10.1007/s40266-018-0597-4. (PMID: 10.1007/s40266-018-0597-430411283) ; Wagner A, Weinberger B (2020) Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol 11:717. https://doi.org/10.3389/fimmu.2020.00717. (PMID: 10.3389/fimmu.2020.00717323910177190794) ; Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC, ZOE-50 Study Group (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372:2087–2096. https://doi.org/10.1056/NEJMoa1501184. (PMID: 10.1056/NEJMoa1501184) ; de Waure C, Boccalini S, Bonanni P, Amicizia D, Poscia A, Bechini A, Barbieri M, Capri S, Specchia ML, Di Pietro ML, Arata L, Cacciatore P, Panatto D, Gasparini R (2019) Adjuvanted influenza vaccine for the Italian elderly in the 2018/19 season: an updated health technology assessment. Eur J Public Health 29:900–905. https://doi.org/10.1093/eurpub/ckz041. (PMID: 10.1093/eurpub/ckz041309290266761839) ; Vallejo AN (2006) Age-dependent alterations of the T cell repertoire and functional diversity of T cells of the aged. Immunol Res 36:221–228. https://doi.org/10.1385/IR:36:1:221. (PMID: 10.1385/IR:36:1:22117337782) ; Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194:4073–4080. https://doi.org/10.4049/jimmunol.1500046. (PMID: 10.4049/jimmunol.150004625888703) ; Weyand CM, Goronzy JJ (2016) Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc S422-S428. 13 Suppl 5(Suppl 5).  https://doi.org/10.1513/AnnalsATS.201602-095AW. ; Qi Q, Zhang DW, Weyand CM, Goronzy JJ (2014) Mechanisms shaping the naive T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74. https://doi.org/10.1016/j.exger.2014.01.005. (PMID: 10.1016/j.exger.2014.01.005244403894096164) ; Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8:982. https://doi.org/10.3389/fimmu.2017.00982. (PMID: 10.3389/fimmu.2017.00982288610865559470) ; Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM (2020) Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 42:521–536. https://doi.org/10.1007/s00281-020-00818-9. (PMID: 10.1007/s00281-020-00818-9329308527490574) ; Vitlic A, Lord JM, Phillips AC (2014) Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. Age (Dordr) 36:9631. https://doi.org/10.1007/s11357-014-9631. (PMID: 10.1007/s11357-014-963124562499) ; Goldberg EL, Shaw AC, Montgomery RR (2020) How inflammation blunts innate immunity in aging. Interdiscip Top Gerontol Geriatr 43:1–17. https://doi.org/10.1159/000504480. (PMID: 10.1159/000504480322946418063508) ; Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005. (PMID: 10.1016/j.tem.2016.09.00527789101) ; Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM (2018) Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17:e12675. https://doi.org/10.1111/acel.12675. (PMID: 10.1111/acel.1267529024417) ; Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci 18:1742. https://doi.org/10.3390/ijms18081742. (PMID: 10.3390/ijms18081742287961995578132) ; Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698. https://doi.org/10.2174/138161213805219711. (PMID: 10.2174/138161213805219711230617263749774) ; Fülöp T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271. https://doi.org/10.3389/fimmu.2013.00271. (PMID: 10.3389/fimmu.2013.00271240627393772506) ; Witkowski JM, Mikosik A, Bryl E, Fulop T (2018) Proteodynamics in aging human T cells - the need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 107:161–168. https://doi.org/10.1016/j.exger.2017.10.009. (PMID: 10.1016/j.exger.2017.10.00929038026) ; Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML (2019) Cutting edge: synapse propensity of human memory CD8 T cells confers competitive advantage over naive counterparts. J Immunol 203:601–606. https://doi.org/10.4049/jimmunol.1801687. (PMID: 10.4049/jimmunol.1801687312012376643047) ; Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T Jr (2006) Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 18:1017–1030. https://doi.org/10.1016/j.cellsig.2005.08.016. (PMID: 10.1016/j.cellsig.2005.08.01616236485) ; Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A (2012) Aging, immunosenescence and membrane rafts: the lipid connection. Longev Healthspan 1:6. https://doi.org/10.1186/2046-2395-1-6. (PMID: 10.1186/2046-2395-1-6247645113886260) ; Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M (2010) Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 10(Suppl 1):S41-52. https://doi.org/10.1111/j.1447-0594.2010.00600.x. (PMID: 10.1111/j.1447-0594.2010.00600.x20590841) ; Gupta SS (1989) Membrane signal transduction in T cells in aging humans. Ann N Y Acad Sci 568:277–282. https://doi.org/10.1111/j.1749-6632.1989.tb12517.x. (PMID: 10.1111/j.1749-6632.1989.tb12517.x2534266) ; Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29:105–111. https://doi.org/10.1016/j.coi.2014.05.007. (PMID: 10.1016/j.coi.2014.05.00724934647) ; Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T (2018) Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol 105:128–139. https://doi.org/10.1016/j.exger.2018.01.005. (PMID: 10.1016/j.exger.2018.01.00529307735) ; Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169. https://doi.org/10.1111/j.0105-2896.2005.00256.x. (PMID: 10.1111/j.0105-2896.2005.00256.x15882352) ; McGuire PJ (2019) Mitochondrial dysfunction and the aging immune system. Biology (Basel) 8:26. https://doi.org/10.3390/biology8020026. (PMID: 10.3390/biology802002631083529) ; Lee KA, Robbins PD, Camell CD (2021) Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 57:107–116. https://doi.org/10.1016/j.coph.2021.01.003. (PMID: 10.1016/j.coph.2021.01.003336846698481958) ; Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643. https://doi.org/10.1016/j.immuni.2013.04.005. (PMID: 10.1016/j.immuni.2013.04.005236016823654249) ; Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E, Toubert A, Price DA, Caputo A, Appay V (2018) Front Immunol 9:2736. https://doi.org/10.3389/fimmu.2018.02736. (PMID: 10.3389/fimmu.2018.02736306192406308131) ; Yanes RE, Zhang H, Shen Y, Weyand CM, Goronzy JJ (2019) Metabolic reprogramming in memory CD4 T cell responses of old adults. Clin Immunol 207:58–67. https://doi.org/10.1016/j.clim.2019.07.003. (PMID: 10.1016/j.clim.2019.07.003312798556827883) ; Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203. https://doi.org/10.1038/s41580-019-0199-y. (PMID: 10.1038/s41580-019-0199-y319379357102936) ; Bjedov I, Rallis C (2020) The target of rapamycin signalling pathway in ageing and lifespan regulation. Genes (Basel) 11:1043. https://doi.org/10.3390/genes11091043. (PMID: 10.3390/genes1109104332899412) ; Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of the immune and the endocrine systems. Immunol Today 18:169–174. (PMID: 10.1016/S0167-5699(97)84663-49136453) ; Teti G, Biondo C, Beninati C (2016) The phagocyte, Metchnikoff, and the foundation of immunology. Microbiol Spectr 4(2).  https://doi.org/10.1128/microbiolspec.MCHD-0009-2015. ; Underhill DM, Gordon S, Imhof BA, Núñez G, Bousso P (2016) Elie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat Rev Immunol 16:651–656. https://doi.org/10.1038/nri.2016.89. (PMID: 10.1038/nri.2016.8927477126) ; Beutler B (2004) Innate immunity: an overview. Mol Immunol 40(12):845–859. https://doi.org/10.1016/j.molimm.2003.10.005. (PMID: 10.1016/j.molimm.2003.10.00514698223) ; Ebihara T (2020) Dichotomous regulation of acquired immunity by innate lymphoid cells. Cells 9:1193. https://doi.org/10.3390/cells9051193. (PMID: 10.3390/cells9051193324032917290502) ; Rosales C (2020) Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 108:377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR. (PMID: 10.1002/JLB.4MIR0220-574RR32202340) ; Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718. (PMID: 10.1146/annurev-pathmechdis-012418-01271831530089) ; Bi J, Wang X (2020) Molecular regulation of NK cell maturation. Front Immunol 11:1945. https://doi.org/10.3389/fimmu.2020.01945. (PMID: 10.3389/fimmu.2020.01945328496537431948) ; Riera Romo M, Pérez-Martínez D, Castillo FC (2016) Innate immunity in vertebrates: an overview. Immunology 148:125–139. https://doi.org/10.1111/imm.12597. (PMID: 10.1111/imm.12597268783384863567) ; Ottaviani E, Malagoli D, Capri M, Franceschi C (2008) Ecoimmunology: is there any room for the neuroendocrine system? BioEssays 30(9):868–874. https://doi.org/10.1002/bies.20801. (PMID: 10.1002/bies.2080118693265) ; Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157. https://doi.org/10.1007/s10522-015-9615-7. (PMID: 10.1007/s10522-015-9615-726472173) ; Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x. (PMID: 10.1111/j.1474-9726.2012.00851.x22708967) ; Nyugen J, Agrawal S, Gollapudi S, Gupta S (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30(6):806–813. https://doi.org/10.1007/s10875-010-9448-8. (PMID: 10.1007/s10875-010-9448-8207037842970801) ; De Maeyer RPH, Chambers ES (2021) The impact of ageing on monocytes and macrophages. Immunol Lett 230:1–10. https://doi.org/10.1016/j.imlet.2020.12.003. (PMID: 10.1016/j.imlet.2020.12.00333309673) ; Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J (2011) Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 186(3):1809–1815. https://doi.org/10.4049/jimmunol.1001866. (PMID: 10.4049/jimmunol.100186621191073) ; Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1. (PMID: 10.1038/s41419-018-0327-1294496475833376) ; Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R (2015) Flow cytometry analysis of NK cell phenotype and function in aging. Methods Mol Biol 1343:9–18. https://doi.org/10.1007/978-1-4939-2963-4_2. (PMID: 10.1007/978-1-4939-2963-4_226420705) ; Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61. https://doi.org/10.1016/j.coi.2014.04.002. (PMID: 10.1016/j.coi.2014.04.00224792889) ; Gupta S (2014) Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 54:47–52. https://doi.org/10.1016/j.exger.2013.12.009. (PMID: 10.1016/j.exger.2013.12.00924370374) ; Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7. (PMID: 10.1038/s41577-019-0215-731558839) ; Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21:17–29. https://doi.org/10.1038/s41590-019-0556-1. (PMID: 10.1038/s41590-019-0556-131819255) ; Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066. https://doi.org/10.1016/j.cell.2020.02.041. (PMID: 10.1016/j.cell.2020.02.041321649089358771) ; Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34. https://doi.org/10.3109/08830185.2010.529976. (PMID: 10.3109/08830185.2010.52997621235323) ; Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427. https://doi.org/10.1177/0022034510381264. (PMID: 10.1177/0022034510381264209403663075579) ; Zhou Y, He C, Wang L, Ge B (2017) Post-translational regulation of antiviral innate signaling. Eur J Immunol 47:1414–1426. https://doi.org/10.1002/eji.201746959. (PMID: 10.1002/eji.201746959287448517163624) ; Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887. https://doi.org/10.1038/nri3547. (PMID: 10.1038/nri3547241575724096436) ; Bailey KL, Smith LM, Heires AJ, Katafiasz DM, Romberger DJ, LeVan TD (2019) Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists. Aging Clin Exp Res 31:1185–1193. https://doi.org/10.1007/s40520-018-1064-0. (PMID: 10.1007/s40520-018-1064-030402800) ; Fülöp T, Larbi A, Witkowski JM (2019) Human inflammaging. Gerontology 65:495–504. https://doi.org/10.1159/000497375. (PMID: 10.1159/00049737531055573) ; Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072. https://doi.org/10.1189/jlb.0805481. (PMID: 10.1189/jlb.080548116501054) ; Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20:375–388. https://doi.org/10.1038/s41577-020-0285-6. (PMID: 10.1038/s41577-020-0285-6321326817186935) ; Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542. (PMID: 10.1073/pnas.1202870109229880823491454) ; Domínguez-Andrés J, Fanucchi S, Joosten LAB, Mhlanga MM, Netea MG (2020) Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol 63:68–75. (PMID: 10.1016/j.ceb.2019.12.00631991317) ; Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, Netea MG, Roger T (2019) Trained immunity confers broad-spectrum protection against bacterial infections. J Infect Dis pii: jiz692. ; van der Heijden CDCC, Noz MP, Joosten LAB, Netea MG, Riksen NP, Keating ST (2017) Epigenetics and trained immunity. Antioxid Redox Signal 29(11):1023–1040. (PMID: 10.1089/ars.2017.731028978221) ; Arts RJ, Joosten LA, Netea MG (2016) Immunometabolic circuits in trained immunity. Semin Immunol 28:425–430. (PMID: 10.1016/j.smim.2016.09.00227686054) ; Franceschi C (1989) Cell proliferation, cell death and aging. Aging 1:3–15. https://doi.org/10.1007/BF03323871. (PMID: 10.1007/BF033238712488297) ; Kirkwood TB, Franceschi C (1992) Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci 21(663):412–417. https://doi.org/10.1111/j.1749-6632.1992.tb38685.x. (PMID: 10.1111/j.1749-6632.1992.tb38685.x) ; Son DH, Park WJ, Lee YJ (2019) Recent advances in anti-aging medicine. Korean J Fam Med 40:289–296. https://doi.org/10.4082/kjfm.19.0087. (PMID: 10.4082/kjfm.19.0087315580076768834) ; Chatterjee A, Georgiev G, Iannacchione G (2017) Aging and efficiency in living systems: complexity, adaptation and self-organization. Mech Ageing Dev 163:2–7. https://doi.org/10.1016/j.mad.2017.02.009. (PMID: 10.1016/j.mad.2017.02.00928267566) ; Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. https://doi.org/10.1016/j.mad.2006.11.016. (PMID: 10.1016/j.mad.2006.11.01617116321) ; Giunta S (2008) Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm-aging, from robustness to frailty. Inflamm Res 57(12):558–563. https://doi.org/10.1007/s00011-008-7243-2. (PMID: 10.1007/s00011-008-7243-219109735) ; Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57. https://doi.org/10.1016/j.mad.2014.06.005. (PMID: 10.1016/j.mad.2014.06.005250110775881904) ; Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18(4):169–174. https://doi.org/10.1016/s0167-5699(97)84663-4. (PMID: 10.1016/s0167-5699(97)84663-49136453) ; Ottaviani E, Franceschi C (1998) A new theory on the common evolutionary origin of natural immunity, inflammation and stress response: the invertebrate phagocytic immunocyte as an eye-witness. Domest Anim Endocrinol 15(5):291–296. https://doi.org/10.1016/s0739-7240(98)00021-6. (PMID: 10.1016/s0739-7240(98)00021-69785032) ; Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A (2017) Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 75(6):442–455. https://doi.org/10.1093/nutrit/nux013. (PMID: 10.1093/nutrit/nux013285953185914347) ; Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S (2020) Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 64:101142. https://doi.org/10.1016/j.arr.2020.101142. (PMID: 10.1016/j.arr.2020.10114232814129) ; Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1(4667):1383–1392. https://doi.org/10.1136/bmj.1.4667.1383. (PMID: 10.1136/bmj.1.4667.1383154267592038162) ; Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafè M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34(8):911–921. https://doi.org/10.1016/s0531-5565(99)00068-6. (PMID: 10.1016/s0531-5565(99)00068-610673145) ; Hitt R, Young-Xu Y, Silver M, Perls T (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652. https://doi.org/10.1016/S0140-6736(99)01987-X. (PMID: 10.1016/S0140-6736(99)01987-X10466675) ; Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16. https://doi.org/10.1016/0167-5699(95)80064-6. (PMID: 10.1016/0167-5699(95)80064-67880382) ; Santos-Lozano A, Valenzuela PL, Llavero F, Lista S, Carrera-Bastos P, Hampel H, Pareja-Galeano H, Gálvez BG, López JA, Vázquez J, Emanuele E, Zugaza JL, Lucia A (2020) Successful aging: insights from proteome analyses of healthy centenarians. Aging (Albany NY) 12:3502–3515. https://doi.org/10.18632/aging.102826. (PMID: 10.18632/aging.10282632100723) ; Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A (2019) Genetic signatures of centenarians: implications for achieving successful aging. Curr Pharm Des 25:4133–4138. https://doi.org/10.2174/1381612825666191112094544. (PMID: 10.2174/138161282566619111209454431721694) ; Johnson TE, Bruunsgaard H (1998) Implications of hormesis for biomedical aging research. Hum Exp Toxicol 17(5):263–265. https://doi.org/10.1177/096032719801700509. (PMID: 10.1177/0960327198017005099663934) ; Calabrese EJ, Baldwin LA (1999) The marginalization of hormesis. Toxicol Pathol 27(2):187–94.  https://doi.org/10.1177/019262339902700206. ; Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5:61. https://doi.org/10.3389/fmed.2018.00061. (PMID: 10.3389/fmed.2018.0006129662881) ; Giuliani C, Pirazzini C, Delledonne M, Xumerle L, Descombes P, Marquis J, Mengozzi G, Monti D, Bellizzi D, Passarino G, Luiselli D, Franceschi C, Garagnani P (2017) Centenarians as extreme phenotypes: an ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mech Ageing Dev 165(Pt B):195–201. https://doi.org/10.1016/j.mad.2017.02.007. (PMID: 10.1016/j.mad.2017.02.00728242236) ; Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R (1993) Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 23(9):2375–2378. https://doi.org/10.1002/eji.1830230950. (PMID: 10.1002/eji.18302309508370415) ; Baggio G, Donazzan S, Monti D, Mari D, Martini S, Gabelli C, Dalla Vestra M, Previato L, Guido M, Pigozzo S, Cortella I, Crepaldi G, Franceschi C (1998) Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J 12(6):433–437. https://doi.org/10.1096/fasebj.12.6.433. (PMID: 10.1096/fasebj.12.6.4339535215) ; Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10):1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029. (PMID: 10.1016/j.ebiom.2015.07.029266295514634197) ; Franceschi C, Bonafè M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720. https://doi.org/10.1016/s0264-410x(99)00513-7. (PMID: 10.1016/s0264-410x(99)00513-710689155) ; Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6:35509–35521. (PMID: 10.18632/oncotarget.5899264313294742121) ; Effros RB (2003) Replicative senescence: the final stage of memory T cell differentiation? Curr HIV Res 1:153–165. (PMID: 10.2174/157016203348534815043200) ; Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2018) Senescence-associated secretory phenotypes reveal cell- nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868. ; Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972. (PMID: 10.1172/JCI64098234547593582125) ; Birch J, Passos JF (2017) Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? Bioessays 39(5). ; Campisi J (2016) Cellular senescence and lung function during aging. Yin and Yang. Ann Am Thorac Soc 13(Supplement_5):S402. ; Yarbro JR, Emmons RS, Pence BD (2020) Macrophage immunometabolism and inflammaging: roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism 2(3):e200026. https://doi.org/10.20900/immunometab20200026. (PMID: 10.20900/immunometab20200026327748957409778) ; Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6. (PMID: 10.1016/0014-4827(61)90192-613905658) ; Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1. (PMID: 10.1038/s41419-018-0327-1294496475833376) ; Iske J, Seyda M, Heinbokel T, Maenosono R, Minami K, Nian Y, Quante M, Falk CS, Azuma H, Martin F, Passos JF, Niemann CU, Tchkonia T, Kirkland JL, Elkhal A, Tullius SG (2020) Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 11(1):4289. https://doi.org/10.1038/s41467-020-18039-x. (PMID: 10.1038/s41467-020-18039-x328553977453018) ; Olivieri F, Prattichizzo F, Grillari J, Balistreri CR (2018) Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm 17(2018):9076485. https://doi.org/10.1155/2018/9076485. (PMID: 10.1155/2018/9076485) ; Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102(4):977–988. https://doi.org/10.1189/jlb.3RI0716-335R. (PMID: 10.1189/jlb.3RI0716-335R287334625597513) ; Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW (2019) Dissecting aging and senescence-current concepts and open lessons. Cells 8(11):1446. https://doi.org/10.3390/cells8111446. (PMID: 10.3390/cells8111446317317706912776) ; Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C (2020) Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 42:589–605. https://doi.org/10.1007/s00281-020-00814-z. (PMID: 10.1007/s00281-020-00814-z329972247666274) ; Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179(3):363–377. https://doi.org/10.1111/cei.12474. (PMID: 10.1111/cei.12474253458254337670) ; Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20. (PMID: 10.1016/j.phrs.2012.10.00523079287) ; Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 19:1–15. https://doi.org/10.1038/s41435-021-00126-8. (PMID: 10.1038/s41435-021-00126-8) ; Ragonnaud E, Biragyn A (2021) Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18(1):2. https://doi.org/10.1186/s12979-020-00213-w. (PMID: 10.1186/s12979-020-00213-w333974047784378) ; DeJong EN, Surette MG, Bowdish DME (2020) The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28(2):180–189. https://doi.org/10.1016/j.chom.2020.07.013. (PMID: 10.1016/j.chom.2020.07.01332791111) ; Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr 21(38):329–356. https://doi.org/10.1146/annurev-nutr-082117-051637. (PMID: 10.1146/annurev-nutr-082117-051637) ; Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485. https://doi.org/10.1016/j.cub.2016.04.016. (PMID: 10.1016/j.cub.2016.04.01627185560) ; Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75(1):129–148. https://doi.org/10.1007/s00018-017-2674-y. (PMID: 10.1007/s00018-017-2674-y29032502) ; Coman V, Vodnar DC (2020) Gut microbiota and old age: modulating factors and interventions for healthy longevity. Exp Gerontol 41:111095. https://doi.org/10.1016/j.exger.2020.111095. (PMID: 10.1016/j.exger.2020.111095) ; Bulut O, Kilic G, Domínguez-Andrés J, Netea MG (2020) Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 32(12):741–753. https://doi.org/10.1093/intimm/dxaa052. (PMID: 10.1093/intimm/dxaa052327668487680842) ; Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579. https://doi.org/10.1002/1873-3468.13498. (PMID: 10.1002/1873-3468.1349831211858) ; Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A (2020) Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY) 12:26263–26278. https://doi.org/10.18632/aging.202422. (PMID: 10.18632/aging.20242233361522) ; Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C (2006) Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 12(24):3161–3171. https://doi.org/10.2174/138161206777947470. (PMID: 10.2174/13816120677794747016918441) ; Picca A, Lezza AMS, Leeuwenburgh C, Pesce V, Calvani R, Landi F, Bernabei R, Marzetti E (2017) Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int J Mol Sci 18(5):933. https://doi.org/10.3390/ijms18050933. (PMID: 10.3390/ijms18050933284529645454846) ; Yang Q, Shu HB (2020) Deciphering the pathways to antiviral innate immunity and inflammation. Adv Immunol 145:1–36. https://doi.org/10.1016/bs.ai.2019.11.001. (PMID: 10.1016/bs.ai.2019.11.00132081195) ; Burtscher J, Burtscher M, Millet GP (2021) The central role of mitochondrial fitness on antiviral defenses: an advocacy for physical activity during the COVID-19 pandemic. Redox Biol 43:101976. https://doi.org/10.1016/j.redox.2021.101976. (PMID: 10.1016/j.redox.2021.101976339328698062414) ; Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S (2020) Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 42:607–617. https://doi.org/10.1007/s00281-020-00813-0. (PMID: 10.1007/s00281-020-00813-0327570367666292) ; Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10:2247. https://doi.org/10.3389/fimmu.2019.02247. (PMID: 10.3389/fimmu.2019.02247316080616773825) ; Pereira B, Xu XN, Akbar AN (2020) Targeting inflammation and immunosenescence to improve vaccine responses in the elderly. Front Immunol 11:583019. https://doi.org/10.3389/fimmu.2020.583019. (PMID: 10.3389/fimmu.2020.583019331782137592394) ; De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003–3026. https://doi.org/10.2174/138161209789058110. (PMID: 10.2174/13816120978905811019754376) ; Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: an update. Physiol Int 105(4):298–308. https://doi.org/10.1556/2060.105.2018.4.32. (PMID: 10.1556/2060.105.2018.4.32305870279341286) ; Sierra F, Kohanski R (2017) Geroscience and the trans-NIH Geroscience Interest Group. GSIG Geroscience 39(1):1–5. https://doi.org/10.1007/s11357-016-9954-6. (PMID: 10.1007/s11357-016-9954-628299635) ; Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M (2021) The role of T cells in age-related diseases. Nat Rev Immunol.  https://doi.org/10.1038/s41577-021-00557-4. ; Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. eCollection 2018.  https://doi.org/10.3389/fimmu.2018.00586. ; Gritsenko A, Green JP, Brough D, Lopez-Castejon G (2020) Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 55:15–25. https://doi.org/10.1016/j.cytogfr.2020.08.003. (PMID: 10.1016/j.cytogfr.2020.08.003328836067571497) ; De Winter G (2015) Aging as disease. Med Health Care Philos 18:237–243. https://doi.org/10.1007/s11019-014-9600-y. (PMID: 10.1007/s11019-014-9600-y25240472) ; Janac S, Clarke B, Gems D (2017) Aging: natural or disease? A view from medical textbooks. In: Vaiserman AM (ed) Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, Cambridge (UK), p 2017. ; Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM (2019) Are we ill because we age? Front Physiol 18(10):1508. https://doi.org/10.3389/fphys.2019.01508. (PMID: 10.3389/fphys.2019.01508) ; Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 10(8):1960. https://doi.org/10.3389/fimmu.2017.01960. (PMID: 10.3389/fimmu.2017.01960) ; Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nature Med 26:450–452. (PMID: 10.1038/s41591-020-0820-932284615) ; Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D’Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A (2020) COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 32(8):1599–1608. https://doi.org/10.1007/s40520-020-01631-y. (PMID: 10.1007/s40520-020-01631-y325573327298699) ; Kadambari S, Klenerman P, Pollard AJ (2020) Why the elderly appear to be more severely affected by COVID-19: the potential role of immunosenescence and CMV. Rev Med Virol 30:e2144. https://doi.org/10.1002/rmv.2144. (PMID: 10.1002/rmv.2144326719667404358) ; Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV (2020) Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol 7(11):1748. https://doi.org/10.3389/fimmu.2020.01748. (PMID: 10.3389/fimmu.2020.01748) ; Pietrobon AJ, Teixeira FME, Sato MN (2020) Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol 27(11):579220. https://doi.org/10.3389/fimmu.2020.579220. (PMID: 10.3389/fimmu.2020.579220) ; Akbar AN, Gilroy DW (2020) Aging immunity may exacerbate COVID-19. Science 369(6501):256–257. https://doi.org/10.1126/science.abb0762. (PMID: 10.1126/science.abb076232675364) ; Flaherty GT, Hession P, Liew CH, Lim BCW, Leong TK, Lim V, Sulaiman LH (2020) COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations. Trop Dis Travel Med Vaccines 28(6):16. https://doi.org/10.1186/s40794-020-00118-y. (PMID: 10.1186/s40794-020-00118-y) ; Arsun B, Shepherd HS, Claudio F, Luigi F (2020) A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 17:23. eCollection 2020.  https://doi.org/10.1186/s12979-020-00196-8  . ; Ostan R, Monti D, Gueresi P, Bussolotto M, Franceschi C, Baggio G (2016) Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 130(19):1711–1725. https://doi.org/10.1042/CS20160004. (PMID: 10.1042/CS2016000427555614) ; Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165(Pt B):129–138. https://doi.org/10.1016/j.mad.2016.12.008. (PMID: 10.1016/j.mad.2016.12.00828038993) ; Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Saphire EO, Smith DM, Sette A, Crotty S (2020) Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183(4):996–1012.e19. Epub 2020 Sep 16.  https://doi.org/10.1016/j.cell.2020.09.038. ; Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W (2020) A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11(10):740–770.  https://doi.org/10.1007/s13238-020-00762-2  . ; Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM (2019) Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 19:563–572. https://doi.org/10.1038/s41577-019-0177-9. (PMID: 10.1038/s41577-019-0177-931175337) ; Weyh C, Krüger K, Strasser B (2020) Physical activity and diet shape the immune system during aging. Nutrients 12(3):622. https://doi.org/10.3390/nu12030622. (PMID: 10.3390/nu12030622321210497146449) ; Fuellen G, Liesenfeld O, Kowald A, Barrantes I, Bastian M, Simm A, Jansen L, Tietz-Latza A, Quandt D, Franceschi C, Walter M (2020) The preventive strategy for pandemics in the elderly is to collect in advance samples & data to counteract chronic inflammation (inflammaging. Ageing Res Rev 62:101091. https://doi.org/10.1016/j.arr.2020.101091. (PMID: 10.1016/j.arr.2020.101091324540907245683) ; Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, Wan W, Tai X (2016) An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res 2016:8426874. https://doi.org/10.1155/2016/8426874. (PMID: 10.1155/2016/8426874274939734963991) ; Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F (2017) Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40:95–119. https://doi.org/10.1016/j.arr.2017.09.001. (PMID: 10.1016/j.arr.2017.09.00128899766) ; Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX (2021) Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 65:101205. https://doi.org/10.1016/j.arr.2020.101205. (PMID: 10.1016/j.arr.2020.10120533137510) ; Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371–384. https://doi.org/10.1038/s41576-018-0004-3. (PMID: 10.1038/s41576-018-0004-329643443)
  • Grant Information: 106634 and PJT-162366 cihr
  • Contributed Indexing: Keywords: Cytokines; Free radicals; Immunobiography; Immunosenescence; Inflammaging; Macrophages; Microbiome; Mitochondria; SASP; Signaling; Trained immunity
  • Entry Date(s): Date Created: 20210918 Date Completed: 20230320 Latest Revision: 20230320
  • Update Code: 20231215
  • PubMed Central ID: PMC8449217

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -