Zum Hauptinhalt springen

β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction.

Hu, S ; Russell, JO ; et al.
In: ELife, Jg. 10 (2021-10-05)
Online academicJournal

Titel:
β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction.
Autor/in / Beteiligte Person: Hu, S ; Russell, JO ; Liu, S ; Cao, C ; McGaughey, J ; Rai, R ; Kosar, K ; Tao, J ; Hurley, E ; Poddar, M ; Singh, S ; Bell, A ; Shin, D ; Raeman, R ; Singhi, AD ; Nejak-Bowen, K ; Ko, S ; Monga, SP
Link:
Zeitschrift: ELife, Jg. 10 (2021-10-05)
Veröffentlichung: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-, 2021
Medientyp: academicJournal
ISSN: 2050-084X (electronic)
DOI: 10.7554/eLife.71310
Schlagwort:
  • Animals
  • Cystic Fibrosis Transmembrane Conductance Regulator metabolism
  • Epithelial Cells metabolism
  • Fibrosis immunology
  • Inflammation immunology
  • Mice
  • Mice, Transgenic
  • NF-kappa B metabolism
  • beta Catenin metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator genetics
  • Fibrosis genetics
  • Inflammation genetics
  • NF-kappa B genetics
  • beta Catenin genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural
  • Language: English
  • [Elife] 2021 Oct 05; Vol. 10. <i>Date of Electronic Publication: </i>2021 Oct 05.
  • MeSH Terms: Cystic Fibrosis Transmembrane Conductance Regulator / *genetics ; Fibrosis / *genetics ; Inflammation / *genetics ; NF-kappa B / *genetics ; beta Catenin / *genetics ; Animals ; Cystic Fibrosis Transmembrane Conductance Regulator / metabolism ; Epithelial Cells / metabolism ; Fibrosis / immunology ; Inflammation / immunology ; Mice ; Mice, Transgenic ; NF-kappa B / metabolism ; beta Catenin / metabolism
  • References: J Hepatol. 2013 Mar;58(3):575-82. (PMID: 23085249) ; Semin Liver Dis. 2005 Aug;25(3):251-64. (PMID: 16143942) ; Nat Commun. 2020 Jan 23;11(1):445. (PMID: 31974352) ; Hepatology. 2016 Nov;64(5):1652-1666. (PMID: 27533619) ; J Clin Invest. 2015 Apr;125(4):1533-44. (PMID: 25774505) ; Clin Chim Acta. 2002 Feb;316(1-2):71-81. (PMID: 11750276) ; Gastroenterology. 1993 Dec;105(6):1857-64. (PMID: 7504645) ; Nat Cell Biol. 2015 Aug;17(8):971-983. (PMID: 26192438) ; Hepatology. 2001 Sep;34(3):519-22. (PMID: 11526537) ; Annu Rev Pathol. 2018 Jan 24;13:351-378. (PMID: 29125798) ; Hepatology. 2018 Mar;67(3):955-971. (PMID: 28714273) ; Elife. 2021 Oct 05;10:. (PMID: 34609282) ; Hepatology. 2019 Jan;69(1):420-430. (PMID: 30070383) ; Hepatology. 2019 May;69(5):2180-2195. (PMID: 30565271) ; Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1270-1278. (PMID: 28754451) ; Bioinformatics. 2015 Jan 15;31(2):166-9. (PMID: 25260700) ; Annu Rev Pathol. 2020 Jan 24;15:23-50. (PMID: 31399003) ; Gastroenterology. 2007 Jul;133(1):80-90. (PMID: 17631134) ; Commun Biol. 2020 Jun 5;3(1):289. (PMID: 32503996) ; Am J Pathol. 2010 Feb;176(2):744-53. (PMID: 20019186) ; Cell Stem Cell. 2019 Jul 3;25(1):23-38.e8. (PMID: 31080134) ; J Hepatol. 2017 Sep;67(3):619-631. (PMID: 28712691) ; Hepatology. 2018 Jun;67(6):2320-2337. (PMID: 29023813) ; J Hepatol. 2019 Jan;70(1):151-171. (PMID: 30266282) ; Cell Stem Cell. 2019 Jul 3;25(1):39-53.e10. (PMID: 31080135) ; Nat Rev Gastroenterol Hepatol. 2011 Feb;8(2):108-18. (PMID: 21293511) ; Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404) ; Genome Biol. 2014;15(12):550. (PMID: 25516281) ; Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92. (PMID: 31701148) ; Hepatol Commun. 2019 Apr 22;3(6):730-743. (PMID: 31168508) ; Hepatology. 2019 Feb;69(2):742-759. (PMID: 30215850) ; Nat Commun. 2019 Jul 16;10(1):3126. (PMID: 31311938) ; Nature. 2017 Jul 20;547(7663):350-354. (PMID: 28700576) ; J Clin Invest. 2015 May;125(5):1886-900. (PMID: 25822023) ; Am J Pathol. 2019 Aug;189(8):1501-1504. (PMID: 31202722) ; J Hepatol. 2007 Jan;46(1):134-41. (PMID: 17112626) ; Hepatology. 2013 Feb;57(2):763-74. (PMID: 22941935) ; Am J Pathol. 1999 Feb;154(2):537-41. (PMID: 10027411) ; Oncotarget. 2016 Sep 27;7(39):64030-64042. (PMID: 27588407) ; Nat Rev Immunol. 2014 Mar;14(3):181-94. (PMID: 24566915) ; Hepatology. 2002 Oct;36(4 Pt 1):850-60. (PMID: 12297832) ; Gastroenterology. 2018 Oct;155(4):1218-1232.e24. (PMID: 29964040) ; Hepatology. 2016 Dec;64(6):2118-2134. (PMID: 27629435) ; J Cell Sci. 2008 Sep 1;121(Pt 17):2814-23. (PMID: 18682497) ; Mod Pathol. 2018 Jan;31(1):150-159. (PMID: 28862262) ; Am J Gastroenterol. 2004 Feb;99(2):271-9. (PMID: 15046217) ; Hepatology. 2008 Jan;47(1):288-95. (PMID: 17929301) ; Cancer Cell. 2002 Oct;2(4):323-34. (PMID: 12398896) ; Clin Liver Dis. 2019 May;23(2):263-277. (PMID: 30947876) ; Gastroenterology. 2006 Nov;131(5):1561-72. (PMID: 17101329) ; Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142) ; Am J Pathol. 2009 Sep;175(3):1056-65. (PMID: 19679878) ; Gastroenterology. 2007 Nov;133(5):1579-91. (PMID: 17983805) ; Nature. 2015 Dec 24;528(7583):510-6. (PMID: 26618866) ; Hepatology. 2000 Dec;32(6):1248-54. (PMID: 11093731) ; Gene Expr. 2020 Jun 12;20(1):19-23. (PMID: 31439080)
  • Grant Information: R01 DK116993 United States DK NIDDK NIH HHS; R01 CA258449 United States CA NCI NIH HHS; R01 DK062277 United States DK NIDDK NIH HHS; P30 DK120531 United States DK NIDDK NIH HHS; K01 DK110264 United States DK NIDDK NIH HHS; R01 DK100287 United States DK NIDDK NIH HHS; R01 DK119435 United States DK NIDDK NIH HHS; R01 CA251155 United States CA NCI NIH HHS; T32 EB001026 United States EB NIBIB NIH HHS; R01 CA204586 United States CA NCI NIH HHS; F31 DK115017 United States DK NIDDK NIH HHS
  • Contributed Indexing: Keywords: NF-κB; beta-catenin; cholangiocytes; cystic fibrosis; developmental biology; ductular reaction; human; liver fibrosis; medicine; mouse ; Local Abstract: [plain-language-summary] The liver has an incredible capacity to repair itself or ‘regenerate’ – that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called ‘ductular reaction’, which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called β-catenin – which can cause many types of cells to proliferate – is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce β-catenin in biliary duct cells, while the other lacked β-catenin both in biliary duct cells and in hepatocytes. After a short liver injury – which Hu et al. caused by feeding the mice a specific diet – the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked β-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking β-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that β-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of β-catenin in ductular reaction. Further, the results show a previously unknown interaction between β-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.
  • Molecular Sequence: GEO GSE155981
  • Substance Nomenclature: 0 (CTNNB1 protein, mouse) ; 0 (Cftr protein, mouse) ; 0 (NF-kappa B) ; 0 (beta Catenin) ; 126880-72-6 (Cystic Fibrosis Transmembrane Conductance Regulator)
  • Entry Date(s): Date Created: 20211005 Date Completed: 20211124 Latest Revision: 20230608
  • Update Code: 20231215
  • PubMed Central ID: PMC8555990

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -