Zum Hauptinhalt springen

Quantified impacts of international trade on the United States' carbon intensity.

Wang, Q ; Song, X
In: Environmental science and pollution research international, Jg. 29 (2022-05-01), Heft 22, S. 33075-33094
Online academicJournal

Titel:
Quantified impacts of international trade on the United States' carbon intensity.
Autor/in / Beteiligte Person: Wang, Q ; Song, X
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 29 (2022-05-01), Heft 22, S. 33075-33094
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2022
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-021-18315-3
Schlagwort:
  • Carbon Dioxide analysis
  • China
  • Economic Development
  • Internationality
  • United States
  • Carbon analysis
  • Commerce
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2022 May; Vol. 29 (22), pp. 33075-33094. <i>Date of Electronic Publication: </i>2022 Jan 13.
  • MeSH Terms: Carbon* / analysis ; Commerce* ; Carbon Dioxide / analysis ; China ; Economic Development ; Internationality ; United States
  • References: Andersson FN (2018) International trade and carbon emissions: the role of Chinese institutional and policy reforms. J Environ Manage 205:29–39. (PMID: 10.1016/j.jenvman.2017.09.052) ; Ang BW (2015) LMDI decomposition approach: a guide for implementation. Energy Policy 86:233–238. (PMID: 10.1016/j.enpol.2015.07.007) ; BP (2020) BP statistical review of world energy 2019. ; Brown MA, Kim G, Smith AM, Southworth K (2017) Exploring the impact of energy efficiency as a carbon mitigation strategy in the U.S. Energy Policy 109:249–259. (PMID: 10.1016/j.enpol.2017.06.044) ; Cao Y et al (2018) Driving forces of national and regional carbon intensity changes in China: temporal and spatial multiplicative structural decomposition analysis. J Clean Prod 213:1380–1410. (PMID: 10.1016/j.jclepro.2018.12.155) ; Carton W, Asiyanbi A, Beck S, Buck HJ, Lund JF (2020) Negative emissions and the long history of carbon removal Wiley Interdisciplinary Reviews: Climate Change 11:e671. ; Celik S (2020) The effects of climate change on human behaviors. In: Environment, Climate, Plant and Vegetation Growth. Springer, pp 577–589. ; Chen X, Shuai C, Wu Y, Zhang Y (2020) Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors. Science of the Total Environment 709:135768. ; Chen Y, Hafstead MA (2019) Using a carbon tax to meet US international climate pledges. J Climate Change Economics 10:1950002. (PMID: 10.1142/S2010007819500027) ; De Oliveira-De Jesus PM (2019) Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renewable Sustainable Energy Reviews 101:516–526. (PMID: 10.1016/j.rser.2018.11.030) ; Duan Y, Jiang X (2021) haven or pollution halo? A Re-evaluation on the role of multinational enterprises in global CO2 emissions. Energy Economics:105181. ; Feng T, Du H, Zhang Z, Mi Z, Guan D, Zuo J (2020) Carbon transfer within China: insights from production fragmentation. Energy Economics 86:104647. ; Gozgor, Giray (2017) Does trade matter for carbon emissions in OECD countries? Evidence from a new trade openness measure. Environmental Science Pollution Research. ; Hasanov FJ, Liddle B, Mikayilov JI (2018) The impact of international trade on CO2 emissions in oil exporting countries: territory vs consumption emissions accounting. Energy Economics 74:343–350. (PMID: 10.1016/j.eneco.2018.06.004) ; Huang J, Liu Q, Cai X, Hao Y, Lei H (2018) The effect of technological factors on China’s carbon intensity: new evidence from a panel threshold model. Energy Policy 115:32–42. (PMID: 10.1016/j.enpol.2017.12.008) ; IPCC (2014) The Synthesis Report of the IPCC Fifth Assessment Report. ; Khan AG, Hossain MA, Chen S (2021) Do financial development, trade openness, economic development, and energy consumption affect carbon emissions for an emerging country?. Environmental Science Pollution Research:1–11. ; Koondhar MA, Tan Z, Alam GM, Khan ZA, Wang L, Kong R (2021) Bioenergy consumption, carbon emissions, and agricultural bioeconomic growth: a systematic approach to carbon neutrality in China. Journal of Environmental Management 296:113242. ; Lahiani A, Mefteh-Wali S, Shahbaz M, Vo XV (2021) Does financial development influence renewable energy consumption to achieve carbon neutrality in the USA?. Energy Policy 158:112524. ; Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice. John Wiley & Sons. ; Li R, Su M (2017) The role of natural gas and renewable energy in curbing carbon emission: case study of the United States. Sustainability 9:600. (PMID: 10.3390/su9040600) ; Li Y, Chen K, Zheng N, Cai Q, Li Y, Lin C Strategy research on accelerating green and low-carbon development under the guidance of carbon peak and carbon neutral targets. In: IOP Conference Series: Earth and Environmental Science, 2021. vol 1. IOP Publishing, p 012009. ; Lin B, Zhu J (2017) Energy and carbon intensity in China during the urbanization and industrialization process: a panel VAR approach. J Clean Prod 168:780–790. (PMID: 10.1016/j.jclepro.2017.09.013) ; Liu C, Jiang Y, Xie R (2019a) Does income inequality facilitate carbon emission reduction in the US? J Clean Prod 217:380–387. (PMID: 10.1016/j.jclepro.2019.01.242) ; Liu J, Qu J, Zhao K (2019b) Is China’s development conforms to the Environmental Kuznets Curve hypothesis and the pollution haven hypothesis? J Clean Prod 234:787–796. (PMID: 10.1016/j.jclepro.2019.06.234) ; López LA, Arce G, Zafrilla JE (2013) Parcelling virtual carbon in the pollution haven hypothesis. Energy Economics 39:177–186. (PMID: 10.1016/j.eneco.2013.05.006) ; Mi Z, Meng J, Green F, Coffman DM, Guan D (2018) China’s “exported carbon” peak: patterns, drivers, and implications. Geophys Res Lett 45:4309–4318. (PMID: 10.1029/2018GL077915) ; Mutascu M, Sokic A (2020) Trade openness - CO2 emissions nexus: a wavelet evidence from EU. Environmental Modeling Assessment 25. ; Oliveira-De Jesus D, Paulo M, Galvis JJ, Rojas-Lozano D, Yusta JM (2020) Multitemporal LMDI Index decomposition analysis to explain the changes of ACI by the power sector in Latin America and the Caribbean between 1990–2017. Energies 13:2328. (PMID: 10.3390/en13092328) ; Pan B, Zhang Y (2020) Impact of affluence, nuclear and alternative energy on US carbon emissions from 1960 to 2014. Energy Strategy Reviews 32:100581. ; Plevin RJ, Delucchi MA, O’Hare M (2017) Fuel carbon intensity standards may not mitigate climate change. Energy Policy 105:93–97. (PMID: 10.1016/j.enpol.2017.02.037) ; Raza SA, Shah N, Sharif A (2019) Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy 173:706–720. (PMID: 10.1016/j.energy.2019.01.077) ; Roelfsema M et al (2020) Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat Commun 11:1–12. (PMID: 10.1038/s41467-020-15414-6) ; Sakai M, Barrett J (2016) Border carbon adjustments: addressing emissions embodied in trade. Energy Policy 92:102–110. (PMID: 10.1016/j.enpol.2016.01.038) ; Shahbaz M, Nasreen S, Ahmed K, Hammoudeh S (2017) Trade openness–carbon emissions nexus: the importance of turning points of trade openness for country panels. Energy Economics 61:221–232. (PMID: 10.1016/j.eneco.2016.11.008) ; Shao X, Zhong Y, Li Y, Altuntaş M (2021) Does environmental and renewable energy R&D help to achieve carbon neutrality target? A case of the US economy. Journal of Environmental Management 296:113229. ; Su B, Ang BW (2012) Structural decomposition analysis applied to energy and emissions: some methodological developments. Energy Economics 34:177–188. (PMID: 10.1016/j.eneco.2011.10.009) ; Su B, Ang BW (2015) Multiplicative decomposition of aggregate carbon intensity change using input–output analysis. Appl Energy 154:13–20. (PMID: 10.1016/j.apenergy.2015.04.101) ; Su B, Ang BW (2017) Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Economics 65:137–147. (PMID: 10.1016/j.eneco.2017.05.002) ; Tao R, Umar M, Naseer A, Razi U (2021) The dynamic effect of eco-innovation and environmental taxes on carbon neutrality target in emerging seven (E7) economies. Journal of Environmental Management 299:113525. ; Timmer MP, Dietzenbacher E, Los B, Stehrer R, De Vries GJ (2015) An illustrated user guide to the world input–output database: the case of global automotive production. Rev Int Econ 23:575–605. (PMID: 10.1111/roie.12178) ; Wachsmuth J, Duscha V (2019) Achievability of the Paris targets in the EU—the role of demand-side-driven mitigation in different types of scenarios Energy Efficiency 12:403–421. ; Wang Z, Asghar MM, Zaidi SAH, Wang B (2019a) Dynamic linkages among CO 2 emissions, health expenditures, and economic growth: empirical evidence from Pakistan. Environmental Science Pollution Research 26:15285–15299. (PMID: 10.1007/s11356-019-04876-x) ; Wang Z et al (2019b) Pollution haven hypothesis of domestic trade in China: a perspective of SO2 emissions. Sci Total Environ 663:198–205. (PMID: 10.1016/j.scitotenv.2019.01.287) ; Wang Q, Song X (2021) Why do China and India burn 60% of the world's coal? A decomposition analysis from a global perspective. Energy:120389. ; Wang Q, Wang L (2021) How does trade openness impact carbon intensity? Journal of Cleaner Production 295:126370. ; Wang Q, Zhang F (2021) The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. Journal of cleaner production 279:123838. ; Wang Q, Guo J, Li R (2022a) Official development assistance and carbon emissions of recipient countries: a dynamic panel threshold analysis for low- and lower-middle-income countries. Sustainable Production and Consumption 29:158–170. (PMID: 10.1016/j.spc.2021.09.015) ; Wang Q, Li S, Li R, Jiang F (2022b) Underestimated impact of the COVID-19 on carbon emission reduction in developing countries – a novel assessment based on scenario analysis. Environmental Research 204:111990. ; Wang Q, Wang X, Li R (2022c) Does urbanization redefine the environmental Kuznets curve? An empirical analysis of 134 Countries. Sustainable Cities and Society 76:103382. ; Wang Z, Su B, Xie R, Long H (2020) China's aggregate embodied CO2 emission intensity from 2007 to 2012: a multi-region multiplicative structural decomposition analysis. Energy Economics 85:104568. ; Wang Z, Wei S-J, Zhu K (2013) Quantifying international production sharing at the bilateral and sector levels. National Bureau of Economic Research,. ; William BP, James B, Michele S (2017) Potential of windbreak trees to reduce carbon emissions by agricultural operations in the US. Forests 8:138. (PMID: 10.3390/f8050138) ; Wu L (2016) Paris Agreement: a roadmap to tackle climate and environment challenges. Oxford University Press. ; Xu H, Zhao G, Xie R, Zhu K (2020) A trade-related CO2 emissions and its composition: evidence from China. Journal of Environmental Management 270:110893. ; Xu X, Mu M, Wang Q (2017) Recalculating CO2 emissions from the perspective of value-added trade: an input-output analysis of China’s trade data. Energy Policy 107:158–166. (PMID: 10.1016/j.enpol.2017.04.026) ; Yang H, Shahzadi I, Hussain M (2021) USA carbon neutrality target: evaluating the role of environmentally adjusted multifactor productivity growth in limiting carbon emissions. Journal of Environmental Management 298:113385. ; Yang X, Su B (2019) Impacts of international export on global and regional carbon intensity. Applied Energy 253:113552. ; Zhang D, Wang Z, Li S, Zhang H (2021) Impact of land urbanization on carbon emissions in urban agglomerations of the middle reaches of the Yangtze River. International Journal of Environmental Research Public Health 18:1403. (PMID: 10.3390/ijerph18041403) ; Zhang W et al (2018) Revealing environmental inequality hidden in China’s inter-regional trade. Environmental Science Technology 52:7171–7181. (PMID: 10.1021/acs.est.8b00009) ; Zhang Z, Zhu K, Hewings GJ (2017) A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation. Energy Economics 64:13–23. (PMID: 10.1016/j.eneco.2017.03.007)
  • Grant Information: 71874203 National Natural Science Foundation of China
  • Contributed Indexing: Keywords: Carbon intensity; International trade; Logarithmic Mean Divisia Index; Multi-regional input–output analysis; Quantified impacts; The United States
  • Substance Nomenclature: 142M471B3J (Carbon Dioxide) ; 7440-44-0 (Carbon)
  • Entry Date(s): Date Created: 20220113 Date Completed: 20220509 Latest Revision: 20220509
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -