Zum Hauptinhalt springen

Human gut bacteria produce Τ <subscript>Η</subscript> 17-modulating bile acid metabolites.

Paik, D ; Yao, L ; et al.
In: Nature, Jg. 603 (2022-03-01), Heft 7903, S. 907-912
academicJournal

Titel:
Human gut bacteria produce Τ <subscript>Η</subscript> 17-modulating bile acid metabolites.
Autor/in / Beteiligte Person: Paik, D ; Yao, L ; Zhang, Y ; Bae, S ; D'Agostino, GD ; Zhang, M ; Kim, E ; Franzosa, EA ; Avila-Pacheco, J ; Bisanz, JE ; Rakowski, CK ; Vlamakis, H ; Xavier, RJ ; Turnbaugh, PJ ; Longman, RS ; Krout, MR ; Clish, CB ; Rastinejad, F ; Huttenhower, C ; Huh, JR ; Devlin, AS
Zeitschrift: Nature, Jg. 603 (2022-03-01), Heft 7903, S. 907-912
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2022
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-022-04480-z
Schlagwort:
  • Cell Differentiation
  • Gastrointestinal Tract microbiology
  • Humans
  • Interleukin-17
  • Lithocholic Acid metabolism
  • Lithocholic Acid pharmacology
  • Th17 Cells
  • Bacteria metabolism
  • Bile Acids and Salts
  • Inflammatory Bowel Diseases metabolism
  • Inflammatory Bowel Diseases microbiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2022 Mar; Vol. 603 (7903), pp. 907-912. <i>Date of Electronic Publication: </i>2022 Mar 16.
  • MeSH Terms: Bacteria* / metabolism ; Bile Acids and Salts* ; Inflammatory Bowel Diseases* / metabolism ; Inflammatory Bowel Diseases* / microbiology ; Cell Differentiation ; Gastrointestinal Tract / microbiology ; Humans ; Interleukin-17 ; Lithocholic Acid / metabolism ; Lithocholic Acid / pharmacology ; Th17 Cells
  • Comments: Comment in: Gastroenterology. 2022 Jul;163(1):333-334. (PMID: 35525319)
  • References: Hang, S. et al. Bile acid metabolites control T H 17 and T reg cell differentiation. Nature 576, 143–148 (2019). (PMID: 31776512694901910.1038/s41586-019-1785-z) ; Fiorucci, S. & Distrutti, E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol. Med. 21, 702–714 (2015). (PMID: 2648182810.1016/j.molmed.2015.09.001) ; Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2005). (PMID: 1629935110.1194/jlr.R500013-JLR200) ; Modica, S., Gadaleta, R. M. & Moschetta, A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl. Recept. Signal. 8, e005 (2010). (PMID: 21383957304922610.1621/nrs.08005) ; Schaap, F. G., Trauner, M. & Jansen, P. L. M. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. 11, 55–67 (2014). (PMID: 10.1038/nrgastro.2013.151) ; Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 944 (2016). (PMID: 2776034310.1016/j.immuni.2016.10.009) ; Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018). (PMID: 29798856640788510.1126/science.aan5931) ; Cao, W. et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity 47, 1182–1196 (2017). (PMID: 29262351574109910.1016/j.immuni.2017.11.012) ; Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006). (PMID: 17068223441076410.1126/science.1135245) ; Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009). (PMID: 19169254274512210.1038/ng.311) ; Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010). (PMID: 20453842424384010.1038/ng.582) ; Sakaguchi, S. Naturally arising CD4 + regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004). (PMID: 1503258810.1146/annurev.immunol.21.120601.141122) ; Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Immunology 30, 531–564 (2012). (PMID: 10.1146/annurev.immunol.25.022106.141623) ; Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020). (PMID: 32461639754072110.1038/s41586-020-2193-0) ; Song, X. et al. Microbial bile acid metabolites modulate gut RORγ + regulatory T cell homeostasis. Nature 577, 410–415 (2020). (PMID: 3187584810.1038/s41586-019-1865-0) ; Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126, 1121–1133 (2006). (PMID: 1699013610.1016/j.cell.2006.07.035) ; Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008). (PMID: 1816422210.1016/j.immuni.2007.11.016) ; Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007). (PMID: 1741282810.1152/ajpgi.00027.2007) ; Hirano, S. & Masuda, N. Transformation of bile acids by Eubacterium lentum. Appl. Environ. Microbiol. 42, 912–915 (1981). (PMID: 694771824412610.1128/aem.42.5.912-915.1981) ; Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015). (PMID: 26192599454356110.1038/nchembio.1864) ; Ivanov, I. I. et al. Induction of intestinal T H 17 Cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). (PMID: 19836068279682610.1016/j.cell.2009.09.033) ; Esplugues, E. et al. Control of T H 17 cells occurs in the small intestine. Nature 475, 514–518 (2011). (PMID: 21765430314883810.1038/nature10228) ; Hong, P.-Y., Wu, J.-H. & Liu, W.-T. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl. Environ. Microbiol. 74, 2882–2893 (2008). (PMID: 18344347239490010.1128/AEM.02568-07) ; García-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 10, e01762-19 (2019). (PMID: 31409684669251510.1128/mBio.01762-19) ; Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013). (PMID: 2339516910.1016/j.cmet.2013.01.003) ; Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019). (PMID: 3053197610.1038/s41564-018-0306-4) ; Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). (PMID: 31142855665027810.1038/s41586-019-1237-9) ; Revu, S. et al. IL-23 and IL-1β drive human T H 17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell Rep. 22, 2642–2653 (2018). (PMID: 29514093588413710.1016/j.celrep.2018.02.044) ; Lee, W. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 29, 1294–1304 (2021). (PMID: 3429792210.1016/j.chom.2021.06.019) ; Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). (PMID: 3432546610.1038/s41586-021-03832-5) ; Bouladoux, N., Harrison, O. J. & Belkaid, Y. The mouse model of infection with Citrobacter rodentium. Curr. Protoc. Immunol. 119, 19.15.1–19.15.25 (2017). (PMID: 10.1002/cpim.34) ; Huh, J. R. & Littman, D. R. Small molecule inhibitors of RORγt: targeting T H 17 cells and other applications. Eur. J. Immunol. 42, 2232–2237 (2012). (PMID: 22949321360941710.1002/eji.201242740) ; Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 28263959560014810.1038/nmeth.4197) ; Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8) ; Mi, H., Muruganujan, A. & Thomas, P. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41, D377–D386 (2013). (PMID: 2319328910.1093/nar/gks1118) ; Browne, H. P. et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016). (PMID: 27144353489068110.1038/nature17645) ; Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017). (PMID: 29183332570445910.1186/s13073-017-0490-5) ; Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife 7, e37182 (2018). (PMID: 30014852607849610.7554/eLife.37182) ; Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011). (PMID: 2083753410.1073/pnas.1006734107) ; Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019). (PMID: 3028952810.1093/nar/gky901) ; Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res. 47, D649–D659 (2019). (PMID: 3035742010.1093/nar/gky977) ; Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015). (PMID: 25883141448928510.1093/nar/gkv332) ; Bisanz, J. E. et al. A genomic toolkit for the mechanistic dissection of intractable human gut bacteria. Cell Host Microbe 27, 1001–1013 (2020). (PMID: 32348781729276610.1016/j.chom.2020.04.006) ; Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013). (PMID: 2394219010.1038/ncomms3304) ; Yu, G., Lam, T. T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018). (PMID: 30351396627885810.1093/molbev/msy194) ; Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015). (PMID: 2641876310.1038/nmeth.3589) ; Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007). (PMID: 1737968810.1093/bioinformatics/btm098) ; Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018). (PMID: 30377376623544710.1038/s41592-018-0176-y) ; Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015). (PMID: 2539860910.1093/bioinformatics/btu739) ; Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021). (PMID: 34784344871408210.1371/journal.pcbi.1009442) ; Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). (PMID: 24485249405372110.1186/gb-2014-15-2-r29) ; Smyth, G. K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, 2015). ; Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 76, 907–915 (2008). (PMID: 1816048110.1128/IAI.01432-07) ; Sagaidak, S., Taibi, A., Wen, B. & Comelli, E. M. Development of a real-time PCR assay for quantification of Citrobacter rodentium. J. Microbiol. Methods 126, 76–77 (2016). (PMID: 2719663810.1016/j.mimet.2016.05.008)
  • Grant Information: P30 DK040561 United States DK NIDDK NIH HHS; R00 AI147165 United States AI NIAID NIH HHS; R01 DK110559 United States DK NIDDK NIH HHS; P30 DK043351 United States DK NIDDK NIH HHS; R01 DK120985 United States DK NIDDK NIH HHS; R35 GM128618 United States GM NIGMS NIH HHS; K99 AI147165 United States AI NIAID NIH HHS; T32 GM095450 United States GM NIGMS NIH HHS; R24 DK110499 United States DK NIDDK NIH HHS; 210664/Z/18/Z United Kingdom WT_ Wellcome Trust; U54 DE023798 United States DE NIDCR NIH HHS; P30 DK034854 United States DK NIDDK NIH HHS; R01 DK114252 United States DK NIDDK NIH HHS; R01 AR074500 United States AR NIAMS NIH HHS
  • Substance Nomenclature: 0 (Bile Acids and Salts) ; 0 (IL17A protein, human) ; 0 (Interleukin-17) ; 5QU0I8393U (Lithocholic Acid)
  • Entry Date(s): Date Created: 20220317 Date Completed: 20220415 Latest Revision: 20240210
  • Update Code: 20240210
  • PubMed Central ID: PMC9132548

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -