Zum Hauptinhalt springen

A complete temporal transcription factor series in the fly visual system.

Konstantinides, N ; Holguera, I ; et al.
In: Nature, Jg. 604 (2022-04-01), Heft 7905, S. 316-322
academicJournal

Titel:
A complete temporal transcription factor series in the fly visual system.
Autor/in / Beteiligte Person: Konstantinides, N ; Holguera, I ; Rossi, AM ; Escobar, A ; Dudragne, L ; Chen, YC ; Tran, TN ; Martínez Jaimes, AM ; Özel, MN ; Simon, F ; Shao, Z ; Tsankova, NM ; Fullard, JF ; Walldorf, U ; Roussos, P ; Desplan, C
Zeitschrift: Nature, Jg. 604 (2022-04-01), Heft 7905, S. 316-322
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2022
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-022-04564-w
Schlagwort:
  • Animals
  • Neural Stem Cells cytology
  • Neural Stem Cells metabolism
  • Neurons cytology
  • Neurons metabolism
  • RNA-Seq
  • Single-Cell Analysis
  • Drosophila Proteins genetics
  • Drosophila Proteins metabolism
  • Drosophila melanogaster cytology
  • Drosophila melanogaster genetics
  • Drosophila melanogaster metabolism
  • Gene Expression Regulation, Developmental
  • Optic Lobe, Nonmammalian cytology
  • Transcription Factors metabolism
  • Vision, Ocular
  • Visual Perception
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2022 Apr; Vol. 604 (7905), pp. 316-322. <i>Date of Electronic Publication: </i>2022 Apr 06.
  • MeSH Terms: Drosophila Proteins* / genetics ; Drosophila Proteins* / metabolism ; Drosophila melanogaster* / cytology ; Drosophila melanogaster* / genetics ; Drosophila melanogaster* / metabolism ; Gene Expression Regulation, Developmental* ; Optic Lobe, Nonmammalian* / cytology ; Transcription Factors* / metabolism ; Vision, Ocular* ; Visual Perception* ; Animals ; Neural Stem Cells / cytology ; Neural Stem Cells / metabolism ; Neurons / cytology ; Neurons / metabolism ; RNA-Seq ; Single-Cell Analysis
  • References: Pearson, B. J. & Doe, C. Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004). (PMID: 10.1146/annurev.cellbio.19.111301.11514215473854) ; Sato, M., Yasugi, T. & Trush, O. Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci. Res. 138, 49–58 (2019). (PMID: 10.1016/j.neures.2018.09.00930227165) ; Doe, C. Q. Temporal patterning in the Drosophila CNS. Annu. Rev. Cell Dev. Biol. 33, 219–240 (2017). (PMID: 10.1146/annurev-cellbio-111315-12521028992439) ; Rossi, A. M., Fernandes, V. M. & Desplan, C. Timing temporal transitions during brain development. Curr. Opin. Neurobiol. 42, 84–92 (2017). (PMID: 10.1016/j.conb.2016.11.01027984764) ; Holguera, I. & Desplan, C. Neuronal specification in space and time. Science 362, 176–180 (2018). (PMID: 10.1126/science.aas9435303099446368964) ; Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009). (PMID: 10.1002/cne.2197419226510) ; Oberst, P., Agirman, G. & Jabaudon, D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr. Opin. Neurobiol. 56, 185–193 (2019). (PMID: 10.1016/j.conb.2019.03.00430999235) ; Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000). (PMID: 10.1006/dbio.2000.982910993672) ; Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003). (PMID: 10.1038/nature0191014534589) ; Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001). (PMID: 10.1016/S0092-8674(01)00465-211525736) ; Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013). (PMID: 10.1038/nature12319237835173701960) ; Elliott, J., Jolicoeur, C., Ramamurthy, V. & Cayouette, M. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60, 26–39 (2008). (PMID: 10.1016/j.neuron.2008.08.00818940586) ; Mattar, P., Ericson, J., Blackshaw, S. & Cayouette, M. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85, 497–504 (2015). (PMID: 10.1016/j.neuron.2014.12.052256542555912935) ; Konstantinides, N., Rossi, A. M. & Desplan, C. Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron 85, 447–449 (2015). (PMID: 10.1016/j.neuron.2015.01.016256542494489680) ; Javed, A. et al. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 147, dev188730 (2020). (PMID: 10.1242/dev.18873032878923) ; Alsiö, J. M. et al. Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc. Natl Acad. Sci. USA 110, E716–E725 (2013). (PMID: 10.1073/pnas.1215707110233822033581915) ; Fischbach, K. F. & Dittrich, A. P. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–445 (1989). (PMID: 10.1007/BF00218858) ; Konstantinides, N. et al. Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell 174, 622–635 (2018). (PMID: 10.1016/j.cell.2018.05.021299099836082168) ; Özel, M. N. et al. Neuronal diversity and convergence in a visual system developmental atlas. Nature 589, 88–95 (2020). (PMID: 10.1038/s41586-020-2879-3331492987790857) ; Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional programs of circuit assembly in the Drosophila visual system. Neuron 108, 1045–1057 (2020). (PMID: 10.1016/j.neuron.2020.10.00633125872) ; Nériec, N. & Desplan, C. From the eye to the brain: development of the Drosophila visual system. Curr. Top. Dev. Biol. 116, 247–271 (2016). (PMID: 10.1016/bs.ctdb.2015.11.032269706235174189) ; Ngo, K. T., Andrade, I. & Hartenstein, V. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: a user’s guide to the dynamic morphology of the developing optic lobe. Dev. Biol. 428, 1–24 (2017). (PMID: 10.1016/j.ydbio.2017.05.008285330865825191) ; Suzuki, T., Kaido, M., Takayama, R. & Sato, M. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380, 12–24 (2013). (PMID: 10.1016/j.ydbio.2013.05.00223665475) ; McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018). ; Erclik, T. et al. Integration of temporal and spatial patterning generates neural diversity. Nature 541, 365–370 (2017). (PMID: 10.1038/nature20794280778775489111) ; Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017). (PMID: 10.1038/nmeth.4402288257055764547) ; Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999). (PMID: 10.1016/S0896-6273(00)80701-110197526) ; Erclik, T., Hartenstein, V., McInnes, R. R. & Lipshitz, H. D. Eye evolution at high resolution: the neuron as a unit of homology. Dev. Biol. 332, 70–79 (2009). (PMID: 10.1016/j.ydbio.2009.05.56519467226) ; Hasegawa, E. et al. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138, 983–993 (2011). (PMID: 10.1242/dev.05837021303851) ; Mark, B. et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife 10, e67510 (2021). (PMID: 10.7554/eLife.67510339735238139831) ; Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004). (PMID: 10.1038/nn117214703572) ; Sagner, A. & Briscoe, J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 146, dev182154 (2019). (PMID: 10.1242/dev.18215431767567) ; Sagner, A. et al. A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biol. 19, e3001450 (2021). ; Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019). (PMID: 10.1126/science.aav252231073041) ; Clark, B. S. et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102, 1111–1126 (2019). (PMID: 10.1016/j.neuron.2019.04.010311289456768831) ; Cepko, C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15, 615–627 (2014). (PMID: 10.1038/nrn376725096185) ; Abdusselamoglu, M. D., Eroglu, E., Burkard, T. R. & Knoblich, J. A. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. eLife 8, e46566 (2019). ; Chen, Z. et al. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep. 15, 774–786 (2016). (PMID: 10.1016/j.celrep.2016.03.061271498435154769) ; Ferreira, A. A. G., Sieriebriennikov, B. & Whitbeck, H. HCR RNA-FISH protocol for the whole-mount brains of Drosophila and other insects. Protocols.io, https://doi.org/10.17504/protocols.io.bzh5p386 (2021). ; Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020). (PMID: 10.7554/eLife.50901319397377034979) ; Naidu, V. G. et al. Temporal progression of Drosophila medulla neuroblasts generates the transcription factor combination to control T1 neuron morphogenesis. Dev. Biol. 464, 35–44 (2020). (PMID: 10.1016/j.ydbio.2020.05.005324424187377279) ; Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018). (PMID: 10.1186/s13059-018-1603-1305675746300015) ; Southall, T. et al. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA pol II occupancy in neural stem cells. Dev. Cell 26, 101–112 (2013). (PMID: 10.1016/j.devcel.2013.05.020237921473714590) ; Gold, K. S. & Brand, A. H. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev. 9, 18 (2014). (PMID: 10.1186/1749-8104-9-18250746844127074) ; Guillermin, O., Perruchoud, B., Sprecher, S. G. & Egger, B. Characterization of tailless functions during Drosophila optic lobe formation. Dev. Biol. 405, 202–213 (2015). (PMID: 10.1016/j.ydbio.2015.06.01126111972) ; Chotard, C., Leung, W. & Salecker, I. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48, 237–251 (2005). (PMID: 10.1016/j.neuron.2005.09.01916242405) ; Shiau, F., Ruzycki, P. A. & Clark, B. S. A single-cell guide to retinal development: cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev. Biol. 478, 41–58 (2021). (PMID: 10.1016/j.ydbio.2021.06.005341465338386138)
  • Grant Information: R01 EY013012 United States EY NEI NIH HHS; T32 HD007520 United States HD NICHD NIH HHS; R01 EY017916 United States EY NEI NIH HHS; EY019716 United States NH NIH HHS; RF1 DA048810 United States DA NIDA NIH HHS; K99 EY029356 United States EY NEI NIH HHS
  • Substance Nomenclature: 0 (Drosophila Proteins) ; 0 (Transcription Factors)
  • Entry Date(s): Date Created: 20220407 Date Completed: 20220415 Latest Revision: 20221111
  • Update Code: 20231215
  • PubMed Central ID: PMC9074256

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -