Zum Hauptinhalt springen

Naringenin induces endoplasmic reticulum stress-mediated cell apoptosis and autophagy in human oral squamous cell carcinoma cells.

Liu, JF ; Chang, TM ; et al.
In: Journal of food biochemistry, Jg. 46 (2022-11-01), Heft 11, S. e14221
Online academicJournal

Titel:
Naringenin induces endoplasmic reticulum stress-mediated cell apoptosis and autophagy in human oral squamous cell carcinoma cells.
Autor/in / Beteiligte Person: Liu, JF ; Chang, TM ; Chen, PH ; Lin, JS ; Tsai, YJ ; Wu, HM ; Lee, CJ
Link:
Zeitschrift: Journal of food biochemistry, Jg. 46 (2022-11-01), Heft 11, S. e14221
Veröffentlichung: 2008- : Hoboken, NJ : Wiley ; <i>Original Publication</i>: Westport, Conn. : Food & Nutrition Press, 2022
Medientyp: academicJournal
ISSN: 1745-4514 (electronic)
DOI: 10.1111/jfbc.14221
Schlagwort:
  • Humans
  • Endoplasmic Reticulum Stress
  • Reactive Oxygen Species metabolism
  • Squamous Cell Carcinoma of Head and Neck
  • Apoptosis
  • Autophagy
  • Mouth Neoplasms drug therapy
  • Mouth Neoplasms metabolism
  • Mouth Neoplasms pathology
  • Carcinoma, Squamous Cell drug therapy
  • Carcinoma, Squamous Cell metabolism
  • Carcinoma, Squamous Cell pathology
  • Head and Neck Neoplasms
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Food Biochem] 2022 Nov; Vol. 46 (11), pp. e14221. <i>Date of Electronic Publication: </i>2022 May 21.
  • MeSH Terms: Mouth Neoplasms* / drug therapy ; Mouth Neoplasms* / metabolism ; Mouth Neoplasms* / pathology ; Carcinoma, Squamous Cell* / drug therapy ; Carcinoma, Squamous Cell* / metabolism ; Carcinoma, Squamous Cell* / pathology ; Head and Neck Neoplasms* ; Humans ; Endoplasmic Reticulum Stress ; Reactive Oxygen Species / metabolism ; Squamous Cell Carcinoma of Head and Neck ; Apoptosis ; Autophagy
  • References: Ahamad, M. S., Siddiqui, S., Jafri, A., Ahmad, S., Afzal, M., & Arshad, M. (2014). Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS ONE, 9(10), e110003. https://doi.org/10.1371/journal.pone.0110003. ; Arul, D., & Subramanian, P. (2013). Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathology Oncology Research, 19(4), 763-770. https://doi.org/10.1007/s12253-013-9641-1. ; Barca, I., Mignogna, C., Novembre, D., Ferragina, F., & Cristofaro, M. G. (2021). Immunohistochemical analysis of the beclin-1 expression predicts the progression of oral squamous cell carcinoma. International Journal of Environmental Research and Public Health, 18(21), 11125. https://doi.org/10.3390/ijerph182111125. ; Cao, W., Li, J., Yang, K., & Cao, D. (2021). An overview of autophagy: Mechanism, regulation and research progress. Bulletin du Cancer, 108(3), 304-322. https://doi.org/10.1016/j.bulcan.2020.11.004. ; Chandrika, B. B., Steephan, M., Kumar, T. R. S., Sabu, A., & Haridas, M. (2016). Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. Life Sciences, 160, 47-56. https://doi.org/10.1016/j.lfs.2016.07.007. ; Chen, B., Tang, J., Guo, Y. S., Li, Y., Chen, Z. N., & Jiang, J. L. (2013). Calpains are required for invasive and metastatic potentials of human HCC cells. Cell Biology International, 37(7), 643-652. https://doi.org/10.1002/cbin.10062. ; Chen, R., Qi, Q. L., Wang, M. T., & Li, Q. Y. (2016). Therapeutic potential of naringin: An overview. Pharmaceutical Biology, 54(12), 3203-3210. https://doi.org/10.1080/13880209.2016.1216131. ; Chung, T. W., Li, S., Lin, C. C., & Tsai, S. W. (2019). Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin. Ci Ji Yi Xue Za Zhi, 31(2), 81-85. https://doi.org/10.4103/tcmj.tcmj_103_18. ; Denton, D., & Kumar, S. (2019). Autophagy-dependent cell death. Cell Death and Differentiation, 26(4), 605-616. https://doi.org/10.1038/s41418-018-0252-y. ; Fang, J., Bao, T., Zhou, H., Wang, N., Wang, Y., Huang, W., & Wu, Y. (2014). Autophagy and apoptosis of HeLa cells induced by recombinant human endostatin combined with hypoxia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 30(12), 1255-1257. ; Feller, L., & Lemmer, J. (2012). Oral squamous cell carcinoma: Epidemiology, clinical presentation and treatment. Journal of Cancer Therapy, 3(4), 263-268. https://doi.org/10.4236/jct.2012.34037. ; Graf, M. R., Jia, W., Johnson, R. S., Dent, P., Mitchell, C., & Loria, R. M. (2009). Autophagy and the functional roles of Atg5 and beclin-1 in the anti-tumor effects of 3beta androstene 17alpha diol neuro-steroid on malignant glioma cells. The Journal of Steroid Biochemistry and Molecular Biology, 115(3-5), 137-145. https://doi.org/10.1016/j.jsbmb.2009.03.013. ; Hasima, N., & Ozpolat, B. (2014). Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death & Disease, 5, e1509. https://doi.org/10.1038/cddis.2014.467. ; He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910. ; Jo, J. R., Park, J. S., Park, Y. K., Chae, Y. Z., Lee, G. H., Park, G. Y., & Jang, B. C. (2012). Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. International Journal of Oncology, 40(4), 1238-1245. https://doi.org/10.3892/ijo.2011.1263. ; Kaufman, R. J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes & Development, 13(10), 1211-1233. https://doi.org/10.1101/gad.13.10.1211. ; Kim, H., & Lee, D. G. (2021). Naringin-generated ROS promotes mitochondria-mediated apoptosis in Candida albicans. IUBMB Life, 73(7), 953-967. https://doi.org/10.1002/iub.2476. ; Kim, J. Y., An, J. M., Chung, W. Y., Park, K. K., Hwang, J. K., Kim du, S., Seo, J. T., & Seo, J. T. (2013). Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytotherapy Research, 27(4), 493-498. https://doi.org/10.1002/ptr.4746. ; Kozlowska, J., Grela, E., Baczynska, D., Grabowiecka, A., & Aniol, M. (2019). Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity. Molecules, 24(4), 679. https://doi.org/10.3390/molecules24040679. ; Kumar, M., Nanavati, R., Modi, T. G., & Dobariya, C. (2016). Oral cancer: Etiology and risk factors: A review. Journal of Cancer Research and Therapeutics, 12(2), 458-463. https://doi.org/10.4103/0973-1482.186696. ; Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27-42. https://doi.org/10.1016/j.cell.2007.12.018. ; Lim, W., Park, S., Bazer, F. W., & Song, G. (2017). Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. Journal of Cellular Biochemistry, 118(5), 1118-1131. https://doi.org/10.1002/jcb.25729. ; Lin, H. J., Ku, K. L., Lin, I. H., & Yeh, C. C. (2017). Naringenin attenuates hepatitis B virus X protein-induced hepatic steatosis. BMC Complementary and Alternative Medicine, 17(1), 505. https://doi.org/10.1186/s12906-017-2019-2. ; Liu, J. F., Hou, C. H., Lin, F. L., Tsao, Y. T., & Hou, S. M. (2015). Nimbolide induces ROS-regulated apoptosis and inhibits cell migration in osteosarcoma. International Journal of Molecular Sciences, 16(10), 23405-23424. https://doi.org/10.3390/ijms161023405. ; Liu, X., Qing, S., Che, K., Li, L., & Liao, X. (2019). Androgen receptor promotes oral squamous cell carcinoma cell migration by increasing EGFR phosphorylation. Oncotargets and Therapy, 12, 4245-4252. https://doi.org/10.2147/OTT.S200718. ; Maggioni, D., Nicolini, G., Rigolio, R., Biffi, L., Pignataro, L., Gaini, R., & Garavello, W. (2014). Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. Nutrition and Cancer, 66(7), 1257-1267. https://doi.org/10.1080/01635581.2014.951732. ; Martinotti, S., Ranzato, E., & Burlando, B. (2018). (−)-Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress. Journal of Cellular Physiology, 233(10), 7082-7090. https://doi.org/10.1002/jcp.26631. ; Mizushima, N. (2007). Autophagy: Process and function. Genes & Development, 21(22), 2861-2873. https://doi.org/10.1101/gad.1599207. ; Nasr Bouzaiene, N., Chaabane, F., Sassi, A., Chekir-Ghedira, L., & Ghedira, K. (2016). Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sciences, 144, 80-85. https://doi.org/10.1016/j.lfs.2015.11.030. ; Park, B. S., Choi, N. E., Lee, J. H., Kang, H. M., Yu, S. B., Kim, H. J., Kang, H. K., & Kim, I. R. (2019). Crosstalk between fisetin-induced apoptosis and autophagy in human oral squamous cell carcinoma. Journal of Cancer, 10(1), 138-146. https://doi.org/10.7150/jca.28500. ; Park, J. H., Jin, C. Y., Lee, B. K., Kim, G. Y., Choi, Y. H., & Jeong, Y. K. (2008). Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food and Chemical Toxicology, 46(12), 3684-3690. https://doi.org/10.1016/j.fct.2008.09.056. ; Ramesh, E., & Alshatwi, A. A. (2013). Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food and Chemical Toxicology, 51, 97-105. https://doi.org/10.1016/j.fct.2012.07.033. ; Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863(12), 2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012. ; Rivera, C., & Venegas, B. (2014). Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncology Letters, 8(1), 7-11. https://doi.org/10.3892/ol.2014.2103. ; Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2021). Reactive oxygen species (ROS): Key components in cancer therapies. Anti-Cancer Agents in Medicinal Chemistry, 22, 215-222. https://doi.org/10.2174/1871520621666210608095512. ; Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 12(1), 11. https://doi.org/10.3390/ph12010011. ; Senft, D., & Ronai, Z. A. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in Biochemical Sciences, 40(3), 141-148. https://doi.org/10.1016/j.tibs.2015.01.002. ; Seo, S. H., Kim, S. E., & Lee, S. E. (2020). ER stress induced by ER calcium depletion and UVB irradiation regulates tight junction barrier integrity in human keratinocytes. Journal of Dermatological Science, 98(1), 41-49. https://doi.org/10.1016/j.jdermsci.2020.02.006. ; Su, M., Mei, Y., & Sinha, S. (2013). Role of the crosstalk between autophagy and apoptosis in cancer. Journal of Oncology, 2013, 102735. https://doi.org/10.1155/2013/102735. ; Towers, C. G., & Thorburn, A. (2016). Therapeutic targeting of autophagy. EBioMedicine, 14, 15-23. https://doi.org/10.1016/j.ebiom.2016.10.034. ; Tuasha, N., Petros, B., & Asfaw, Z. (2018). Plants used as anticancer agents in the Ethiopian traditional medical practices: A systematic review. Evidence-based Complementary and Alternative Medicine, 28, 6274021. https://doi.org/10.1155/2018/6274021. ; Wang, G. Q., Zhang, B., He, X. M., Li, D. D., Shi, J. S., & Zhang, F. (2019). Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacological Research, 139, 452-459. https://doi.org/10.1016/j.phrs.2018.11.043. ; Wang, H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F., Lee, J. H., & Kong, A. N. (2012). Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents in Medicinal Chemistry, 12(10), 1281-1305. https://doi.org/10.2174/187152012803833026. ; Wirawan, E., Vanden Berghe, T., Lippens, S., Agostinis, P., & Vandenabeele, P. (2012). Autophagy: For better or for worse. Cell Research, 22(1), 43-61. https://doi.org/10.1038/cr.2011.152. ; Xu, Q., & Chu, C. C. (2021). Development of ROS-responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. Journal of Biomedical Materials Research. Part A, 109(4), 524-537. https://doi.org/10.1002/jbm.a.37035. ; Yu, C. I., Chen, C. Y., Liu, W., Chang, P. C., Huang, C. W., Han, K. F., Lin, I. P., Lin, M. Y., & Lee, C. H. (2018). Sandensolide induces oxidative stress-mediated apoptosis in oral cancer cells and in zebrafish xenograft model. Marine Drugs, 16(10), 387. https://doi.org/10.3390/md16100387. ; Yue, J., Yang, H., Liu, S., Song, F., Guo, J., & Huang, C. (2018). Influence of naringenin on the biofilm formation of Streptococcus mutans. Journal of Dentistry, 76, 24-31. https://doi.org/10.1016/j.jdent.2018.04.013. ; Zaragoza, C., Villaescusa, L., Monserrat, J., Zaragoza, F., & Alvarez-Mon, M. (2020). Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules, 25(4), 1017. https://doi.org/10.3390/molecules25041017. ; Zhang, F., Dong, W., Zeng, W., Zhang, L., Zhang, C., Qiu, Y., Wang, L., Yin, X., Zhang, C., & Liang, W. (2016). Naringenin prevents TGF-beta1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Research, 18(1), 38. https://doi.org/10.1186/s13058-016-0698-0. ; Zhang, J., Qiu, H., Huang, J., Ding, S., Huang, B., Zhou, P., & Jiang, Q. (2019). EETs/PPARs activation together mediates the preventive effect of naringenin in high glucose-induced cardiomyocyte hypertrophy. Biomedicine & Pharmacotherapy, 109, 1498-1505. https://doi.org/10.1016/j.biopha.2018.10.176. ; Zhou, J., Xia, L., & Zhang, Y. (2019). Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathology, Research and Practice, 215(12), 152707. https://doi.org/10.1016/j.prp.2019.152707.
  • Contributed Indexing: Keywords: apoptosis; autophagy; human oral squamous cell carcinoma; naringenin
  • Substance Nomenclature: HN5425SBF2 (naringenin) ; 0 (Reactive Oxygen Species)
  • Entry Date(s): Date Created: 20220521 Date Completed: 20221206 Latest Revision: 20221228
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -