Zum Hauptinhalt springen

Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging.

Wang, C ; Martins-Bach, AB ; et al.
In: Nature neuroscience, Jg. 25 (2022-06-01), Heft 6, S. 818-831
academicJournal

Titel:
Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging.
Autor/in / Beteiligte Person: Wang, C ; Martins-Bach, AB ; Alfaro-Almagro, F ; Douaud, G ; Klein, JC ; Llera, A ; Fiscone, C ; Bowtell, R ; Elliott, LT ; Smith, SM ; Tendler, BC ; Miller, KL
Zeitschrift: Nature neuroscience, Jg. 25 (2022-06-01), Heft 6, S. 818-831
Veröffentlichung: <2002->: New York, NY : Nature Publishing Group ; <i>Original Publication</i>: New York, NY : Nature America Inc., c1998-, 2022
Medientyp: academicJournal
ISSN: 1546-1726 (electronic)
DOI: 10.1038/s41593-022-01074-w
Schlagwort:
  • Brain Mapping methods
  • Iron analysis
  • Magnetic Resonance Imaging methods
  • Phenotype
  • Prospective Studies
  • United Kingdom
  • Biological Specimen Banks
  • Brain diagnostic imaging
  • Brain pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Neurosci] 2022 Jun; Vol. 25 (6), pp. 818-831. <i>Date of Electronic Publication: </i>2022 May 23.
  • MeSH Terms: Biological Specimen Banks* ; Brain* / diagnostic imaging ; Brain* / pathology ; Brain Mapping / methods ; Iron / analysis ; Magnetic Resonance Imaging / methods ; Phenotype ; Prospective Studies ; United Kingdom
  • References: Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016). (PMID: 10.1038/nn.4393276434305086094) ; Dekkers, I. A., Jansen, P. R. & Lamb, H. J. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK biobank study. Radiology 291, 763–771 (2019). (PMID: 10.1148/radiol.201918101231012815) ; Cox, S. R. et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur. Heart J. 40, 2290–2300 (2019). (PMID: 10.1093/eurheartj/ehz100308545606642726) ; Cox, S. R. et al. Ageing and brain white matter structure in 3,513 UK Biobank participants. Nat. Commun. 7, 13629 (2016). (PMID: 10.1038/ncomms13629279766825172385) ; Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018). (PMID: 10.1038/s41586-018-0571-7303057406786974) ; Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021). (PMID: 10.1038/s41593-021-00826-4338758917610742) ; Alnæs, D. et al. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry 76, 739–748 (2019). (PMID: 10.1001/jamapsychiatry.2019.0257309693336583664) ; Persyn, E. et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat. Commun. 11, 2175 (2020). (PMID: 10.1038/s41467-020-15932-3323585477195435) ; Lyall, D. M. et al. Association between APOE e4 and white matter hyperintensity volume, but not total brain volume or white matter integrity. Brain Imaging Behav. 14, 1468–1476 (2020). (PMID: 10.1007/s11682-019-00069-930903549) ; Liu, C., Li, W., Tong, K. A., Yeom, K. W. & Kuzminski, S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J. Magn. Reson. Imaging 42, 23–41 (2015). (PMID: 10.1002/jmri.2476825270052) ; Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018). (PMID: 10.1016/j.neuroimage.2017.10.03429079522) ; Deistung, A., Schweser, F. & Reichenbach, J. R. Overview of quantitative susceptibility mapping. NMR Biomed. 30, e3569 (2017). (PMID: 10.1002/nbm.3569) ; Chavhan, G. B., Babyn, P. S., Thomas, B., Shroff, M. M. & Haacke, E. M. Principles, techniques, and applications of T2*-based MR imaging and its special applications. RadioGraphics 29, 1433–1449 (2009). (PMID: 10.1148/rg.295095034197556042799958) ; Du, G. et al. Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson’s patients. Mov. Disord. 33, 1423–1431 (2018). (PMID: 10.1002/mds.27318297563996185755) ; Gong, N. -J., Dibb, R., Bulk, M., van der Weerd, L. & Liu, C. Imaging β amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. NeuroImage 191, 176–185 (2019). (PMID: 10.1016/j.neuroimage.2019.02.01930739060) ; Düzel, E. et al. European ultrahigh-field imaging network for neurodegenerative diseases (EUFIND). Alzheimer’s Dement. 11, 538–549 (2019). ; Eckstein, K. et al. Computationally efficient combination of multi-channel phase data from multi-echo acquisitions (ASPIRE). Magn. Reson. Med. 79, 2996–3006 (2018). (PMID: 10.1002/mrm.2696329034511) ; Schofield, M. A. & Zhu, Y. Fast phase unwrapping algorithm for interferometric applications. Opt. Lett. 28, 1194–1196 (2003). (PMID: 10.1364/OL.28.00119412885018) ; Wu, B., Li, W., Avram, A. V., Gho, S. M. & Liu, C. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. NeuroImage 59, 297–305 (2012). (PMID: 10.1016/j.neuroimage.2011.07.01921784162) ; Schweser, F., Deistung, A., Lehr, B. W. & Reichenbach, J. R. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage 54, 2789–2807 (2011). (PMID: 10.1016/j.neuroimage.2010.10.07021040794) ; Li, W. et al. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage 108, 111–122 (2015). (PMID: 10.1016/j.neuroimage.2014.12.04325536496) ; Hernando, D., Vigen, K. K., Shimakawa, A. & Reeder, S. B. R* 2 mapping in the presence of macroscopic B 0 field variations. Magn. Reson. Med. 68, 830–840 (2012). (PMID: 10.1002/mrm.2330622161866) ; Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2021). (PMID: 10.1016/j.neuroimage.2020.11700232502668) ; Smith, S. M. & Nichols, T. E. Statistical challenges in “Big Data” human neuroimaging. Neuron 97, 263–268 (2018). (PMID: 10.1016/j.neuron.2017.12.01829346749) ; Jolobe, O. M. P. Mean corpuscular haemoglobin, referenced and resurrected. J. Clin. Pathol. 64, 833–834 (2011). (PMID: 21606226) ; Langkammer, C. et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 62, 1593–1599 (2012). (PMID: 10.1016/j.neuroimage.2012.05.04922634862) ; Chen, W. et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271, 183–192 (2013). (PMID: 10.1148/radiol.1313035324475808) ; Schweser, F. et al. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: a proposed mechanistic relationship between inflammation and oligodendrocyte vitality. NeuroImage 167, 438–452 (2018). (PMID: 10.1016/j.neuroimage.2017.10.06329097315) ; Papadopoulou, A. et al. Damage of the lateral geniculate nucleus in MS. Neurology 92, e2240–e2249 (2019). (PMID: 10.1212/WNL.0000000000007450309714836537126) ; Swaminathan, S., Fonseca, V. A., Alam, M. G. & Shah, S. V. The role of iron in diabetes and its complications. Diabetes Care 30, 1926–1933 (2007). (PMID: 10.2337/dc06-262517429063) ; Li, J., Zhang, Q., Zhang, N. & Guo, L. Increased brain iron detection by voxel-based quantitative susceptibility mapping in type 2 diabetes mellitus patients with an executive function decline. Front. Neurosci. 14, 1390 (2021). (PMID: 10.3389/fnins.2020.606182) ; Geraldes, R. et al. Distinct influence of different vascular risk factors on white matter brain lesions in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 388–391 (2020). (PMID: 10.1136/jnnp-2019-32236932034114) ; Chaturvedi, R. K. et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol. Dis. 22, 421–434 (2006). (PMID: 10.1016/j.nbd.2005.12.00816480889) ; Mandel, S., Amit, T., Reznichenko, L., Weinreb, O. & Youdim, M. B. H. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res. 50, 229–234 (2006). (PMID: 10.1002/mnfr.20050015616470637) ; Juhás, M. et al. Deep grey matter iron accumulation in alcohol use disorder. NeuroImage 148, 115–122 (2017). (PMID: 10.1016/j.neuroimage.2017.01.00728065850) ; Whitfield, J. B., Zhu, G., Heath, A. C., Powell, L. W. & Martin, N. G. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin. Exp. Res. 25, 1037–1045 (2001). (PMID: 10.1111/j.1530-0277.2001.tb02314.x11505030) ; Pitel, A. L., Segobin, S. H., Ritz, L., Eustache, F. & Beaunieux, H. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction. Neurosci. Biobehav. Rev. 54, 38–45 (2015). (PMID: 10.1016/j.neubiorev.2014.07.02325108034) ; Segobin, S. et al. Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff’s syndrome. Brain 142, 1458–1470 (2019). (PMID: 10.1093/brain/awz05630879030) ; Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). (PMID: 10.1038/ng.3211256426304495769) ; Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010). (PMID: 10.1038/ng.608205628753232052) ; Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). (PMID: 10.1038/s41467-017-01261-5291840565705698) ; Benyamin, B. et al. Variants in TF and HFE explain ∼40% of genetic variation in serum-transferrin levels. Am. J. Hum. Genet. 84, 60–65 (2009). (PMID: 10.1016/j.ajhg.2008.11.011190842172668053) ; Raffield, L. M. et al. Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation? Hum. Mol. Genet. 26, 1966–1978 (2017). (PMID: 10.1093/hmg/ddx082283349356075359) ; Kauwe, J. S. K. et al. Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 955–959 (2010). (PMID: 10.1002/ajmg.b.31053200299402877151) ; Kevelam, S. H. et al. Acute intermittent porphyria-related leukoencephalopathy. Neurology 87, 1258–1265 (2016). (PMID: 10.1212/WNL.000000000000312927558376) ; Lind, L. Genome-wide association study of the metabolic syndrome in UK Biobank. Metab. Syndr. Relat. Disord. 17, 505–511 (2019). (PMID: 10.1089/met.2019.007031589552) ; Smeland, O. B. et al. Genome-wide association analysis of Parkinson’s disease and schizophrenia reveals shared genetic architecture and identifies novel risk loci. Biol. Psychiatry 89, 227–235 (2021). (PMID: 10.1016/j.biopsych.2020.01.02632201043) ; Thompson, A. et al. Functional validity, role, and implications of heavy alcohol consumption genetic loci. Sci. Adv. 6, eaay5034 (2020). (PMID: 10.1126/sciadv.aay5034319988416962045) ; Zhao, B. et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol. Psychiatry 26, 3943–3955 (2019). https://doi.org/10.1038/s41380-019-0569-z. ; Chowanadisai, W., Graham, D. M., Keen, C. L., Rucker, R. B. & Messerli, M. A. Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc. Natl Acad. Sci. USA 110, 9903–9908 (2013). (PMID: 10.1073/pnas.1222142110237166813683776) ; Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca 2+ channels. Physiol. Rev. 90, 1461–1506 (2010). (PMID: 10.1152/physrev.00057.200920959621) ; Smoller, J. W. et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013). (PMID: 10.1016/S0140-6736(12)62129-1) ; Blokland, G. A. M. et al. Genome-wide association study of working memory brain activation. Int. J. Psychophysiol. 115, 98–111 (2017). (PMID: 10.1016/j.ijpsycho.2016.09.01027671502) ; Islam, S. & Watanabe, H. Versican: a dynamic regulator of the extracellular matrix. J. Histochem. Cytochem. 68, 763–775 (2020). (PMID: 10.1369/0022155420953922331313837649968) ; de Jong, J. M., Wang, P., Oomkens, M. & Baron, W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: implications for remyelination (failure). J. Neurosci. Res. 98, 1370–1397 (2020). (PMID: 10.1002/jnr.2458231965607) ; Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015). (PMID: 10.1038/nature14101256073584393366) ; Breteler, M. M. B., Stöcker, T., Pracht, E., Brenner, D. & Stirnberg, R. IC-P-165: MRI In The Rhineland study: a novel protocol for population neuroimaging. Alzheimer’s Dement. 10, P92 (2014). (PMID: 10.1016/j.jalz.2014.05.172) ; Mueller, S. G. et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869–877 (2005). (PMID: 10.1016/j.nic.2005.09.008164434972376747) ; Li, Y. et al. Iron content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study. Front. Neurosci. 14, 1389 (2021). (PMID: 10.3389/fnins.2020.607705) ; Allen, N. et al. UK Biobank: current status and what it means for epidemiology. Health Policy Technol. 1, 123–126 (2012). (PMID: 10.1016/j.hlpt.2012.07.003) ; Eshaghi, A. et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun. 12, 2078 (2021). (PMID: 10.1038/s41467-021-22265-2338243108024377) ; Nobis, L. et al. Hippocampal volume across age: nomograms derived from over 19,700 people in UK Biobank. NeuroImage Clin. 23, 101904 (2019). (PMID: 10.1016/j.nicl.2019.101904312549396603440) ; Raman, B. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 31, 100683 (2021). (PMID: 10.1016/j.eclinm.2020.100683334909287808914) ; Ramos, P. et al. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J. Trace Elem. Med. Biol. 28, 13–17 (2014). (PMID: 10.1016/j.jtemb.2013.08.00124075790) ; Chen, L. et al. Quantitative susceptibility mapping of brain iron and β-amyloid in MRI and PET relating to cognitive performance in cognitively normal older adults. Radiology 298, 353–362 (2020). (PMID: 10.1148/radiol.202020160333231528) ; Yao, S. et al. Quantitative susceptibility mapping reveals an association between brain iron load and depression severity. Front. Hum. Neurosci. 11, 442 (2017). (PMID: 10.3389/fnhum.2017.00442289003915581806) ; Rouault, T. A. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 551–564 (2013). (PMID: 10.1038/nrn345323820773) ; Oshima, S. et al. Brain MRI with quantitative susceptibility mapping: relationship to CT attenuation values. Radiology 294, 600–609 (2020). (PMID: 10.1148/radiol.201918293431909699) ; Pchitskaya, E., Popugaeva, E. & Bezprozvanny, I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70, 87–94 (2018). (PMID: 10.1016/j.ceca.2017.06.00828728834) ; Greenberg, S. M. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8, 165–174 (2009). (PMID: 10.1016/S1474-4422(09)70013-4191619083414436) ; Karsa, A., Punwani, S. & Shmueli, K. The effect of low resolution and coverage on the accuracy of susceptibility mapping. Magn. Reson. Med. 81, 1833–1848 (2019). (PMID: 10.1002/mrm.2754230338864) ; Rua, C. et al. Multi-centre, multi-vendor reproducibility of 7T QSM and R 2 * in the human brain: results from the UK7T study. NeuroImage 223, 117358 (2020). (PMID: 10.1016/j.neuroimage.2020.11735832916289) ; Voelker, M. N. et al. The traveling heads 2.0: multicenter reproducibility of quantitative imaging methods at 7 Tesla. NeuroImage 232, 117910 (2021). (PMID: 10.1016/j.neuroimage.2021.11791033647497) ; Shin, H. G. et al. χ-separation: magnetic susceptibility source separation toward iron and myelin mapping in the brain. NeuroImage 240, 118371 (2021). (PMID: 10.1016/j.neuroimage.2021.11837134242783) ; Wang, Y. & Liu, T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101 (2015). (PMID: 10.1002/mrm.2535825044035) ; Haacke, E. M. et al. Quantitative susceptibility mapping: current status and future directions. Magn. Reson. Imaging 33, 1–25 (2015). (PMID: 10.1016/j.mri.2014.09.00425267705) ; Straub, S. et al. Suitable reference tissues for quantitative susceptibility mapping of the brain. Magn. Reson. Med. 78, 204–214 (2017). (PMID: 10.1002/mrm.2636927529579) ; Patenaude, B., Smith, S. M., Kennedy, D. N. & Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907–922 (2011). (PMID: 10.1016/j.neuroimage.2011.02.04621352927) ; Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018). (PMID: 10.1038/sdata.2018.63296644655903366) ; Griffanti, L. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. NeuroImage 141, 191–205 (2016). (PMID: 10.1016/j.neuroimage.2016.07.01827402600) ; Smith, S. M. et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. eLife 9, e52677 (2020). (PMID: 10.7554/eLife.52677321343847162660) ; Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995). ; Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). (PMID: 10.1038/s41586-018-0579-z303057436786975) ; Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). (PMID: 10.1038/nature1539326432245)
  • Grant Information: MR/K006673/1 United Kingdom MRC_ Medical Research Council; 202788/Z/16/Z United Kingdom WT_ Wellcome Trust; United Kingdom DH_ Department of Health; 203139/Z/16/Z United Kingdom WT_ Wellcome Trust; 215573/Z/19/Z United Kingdom WT_ Wellcome Trust; United Kingdom WT_ Wellcome Trust
  • Substance Nomenclature: E1UOL152H7 (Iron)
  • Entry Date(s): Date Created: 20220523 Date Completed: 20220609 Latest Revision: 20240514
  • Update Code: 20240514
  • PubMed Central ID: PMC9174052

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -