Zum Hauptinhalt springen

Relaxin inhibits <superscript>177</superscript> Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway.

Xu, J ; Wan, S ; et al.
In: Acta pharmaceutica (Zagreb, Croatia), Jg. 72 (2022-10-18), Heft 4, S. 575-585
Online academicJournal

Titel:
Relaxin inhibits <superscript>177</superscript> Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway.
Autor/in / Beteiligte Person: Xu, J ; Wan, S ; Chen, W ; Zhang, Y ; Ji, Z
Link:
Zeitschrift: Acta pharmaceutica (Zagreb, Croatia), Jg. 72 (2022-10-18), Heft 4, S. 575-585
Veröffentlichung: Warsaw, Poland : Sciendo ; <i>Original Publication</i>: Zagreb : Croatian Pharmaceutical Society, 1992-, 2022
Medientyp: academicJournal
ISSN: 1846-9558 (electronic)
DOI: 10.2478/acph-2022-0032
Schlagwort:
  • Humans
  • Apoptosis
  • Cell Death
  • Cell Line, Tumor
  • Bone Neoplasms drug therapy
  • Bone Neoplasms complications
  • Bone Neoplasms metabolism
  • Osteosarcoma drug therapy
  • Osteosarcoma complications
  • Relaxin pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Acta Pharm] 2022 Oct 18; Vol. 72 (4), pp. 575-585. <i>Date of Electronic Publication: </i>2022 Oct 18 (<i>Print Publication: </i>2022).
  • MeSH Terms: Bone Neoplasms* / drug therapy ; Bone Neoplasms* / complications ; Bone Neoplasms* / metabolism ; Osteosarcoma* / drug therapy ; Osteosarcoma* / complications ; Relaxin* / pharmacology ; Humans ; Apoptosis ; Cell Death ; Cell Line, Tumor
  • References: 1. M. Kansara, M. W. Teng, M. J. Smyth and D. M. Thomas, Translational biology of osteosarcoma, Nat. Rev. Cancer. 14 (11) (2014) 722–735; https://doi.org/10.1038/nrc3838. ; 2. J. M. Jimenez-Andrade, W. G. Mantyh, A. P. Bloom, A. S. Ferng, C. P. Geffre and P. W. Mantyh, Bone cancer pain, Ann. N. Y. Acad. Sci. 1198 (2010) 173–181; https://doi.org/10.1111/j.1749-6632.2009.05429.x. ; 3. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 23 (7) (2014) 113–123; https://doi.org/10.1093/annonc/mdu256. ; 4. L. Wang and G. B. Xue, Catalpol suppresses osteosarcoma cell proliferation through blocking epithelial-mesenchymal transition (EMT) and inducing apoptosis, Biochem Biophys. Res. Commun. 495 (1) (2018) 27–34; https://doi.org/10.1016/j.bbrc.2017.10.054. ; 5. S. A. Desai, A. Manjappa and P. Khulbe, Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview, J . Egypt Natl. Canc. Inst. 33 (1) (2021) Article ID 4 (14 pages); https://doi.org/10.1186/s43046-021-00059-3. ; 6. I. McCarthy, The physiology of bone blood flow: a review, J. Bone Joint Surg. Am. 88 (3) (2006) 4–9; https://doi.org/10.2106/JBJS.F.00890. ; 7. O. D. Sherwood, Relaxin’s physiological roles and other diverse actions, Endocr. Rev. 25 (2) (2004) 205–234; https://doi.org/10.1210/er.2003-0013. ; 8. X. Wei, Y. Yang, Y. J. Jiang, J. M. Lei, J. W. Guo and H. Xiao, Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway, Exp. Ther. Med. 15 (1) (2018) 691–698; https://doi.org/10.3892/etm.2017.5448. ; 9. T. Thanasupawat, A. Glogowska, S. Nivedita-Krishnan, B. Wilson, T. Klonisch and S. Hombach-Klonisch, Emerging roles for the relaxin/RXFP1 system in cancer therapy, Mol. Cell Endocrinol. 487 (2019) 85–93; https://doi.org/10.1016/j.mce.2019.02.001. ; 10. D. Bani, A. Pini and S. K. Yue, Relaxin, insulin and diabetes: an intriguing connection, Curr. Diabetes Rev. 8 (5) (2012) 329–335; https://doi.org/10.2174/157339912802083487. ; 11. A. A. Waza, Z. Hamid, S. A. Bhat, N. U. D. Shah, M. Bhat and B. Ganai, Relaxin protects cardiomyocytes against hypoxia-induced damage in in-vitro conditions: Involvement of Nrf2/HO-1 signaling pathway, Life Sci. 213 (2018) 25–31; https://doi.org/10.1016/j.lfs.2018.08.059. ; 12. A. A. Waza, S. A. Bhat and Z. Hamid, Relaxin: A magical therapy for healthy heart, Int. J. Curr. Pharm. Res. 10 (2018) 1–2; http://doi.org/10.22159/ijcpr.2018v10i1.24405. ; 13. S. Bruell, A. Sethi, N. Smith, D. J. Scott, M. A. Hossain, Q. P. Wu, Z. Y. Guo, E. J. Petrie, P. R. Gooley and R. A. D. Bathgate, Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin, Sci. Rep. 7 (1) (2017) Article ID 3294 (12 pages); https://doi.org/10.1038/s41598-017-03638-4. ; 14. Y. Radestock, C. Hoang-Vu and S. Hombach-Klonisch, Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells, Breast Cancer Res . 10 (4) (2008) Article ID R71 (15 pages); https://doi.org/10.1186/bcr2136. ; 15. V. B. Nair, C. S. Samuel, F. Separovic, M. A. Hossain and J. D. Wade, Human relaxin-2: historical perspectives and role in cancer biology, Amino Acids 43 (3) (2012) 1131–1140; https://doi.org/10.1007/s00726-012-1375-y. ; 16. A. Facciolli, A. Ferlin, L. Gianesello, A. Pepe and C. Foresta, Role of relaxin in human osteoclasto-genesis, Ann. N. Y. Acad. Sci. 1160 (1) (2009) 221–225; https://doi.org/10.1111/j.1749-6632.2008.03788.x. ; 17. A. Ferlin, A. Pepe, A. Facciolli, L. Gianesello and C. Foresta, Relaxin stimulates osteoclast differentiation and activation, Bone 46 (2) (2010) 504–513 https://doi.org/10.1016/j.bone.2009.10.007. ; 18. T. G. Chan, E. O’Neill, C. Habjan and B, Cornelissen, Combination strategies to improve targeted radionuclide therapy, J.Nucl. Med. 61 (11) (2020) 1544–1552; https://doi.org/10.2967/jnumed.120.248062. ; 19. J. Yuan, C. Liu, X. Liu, Y. Wang, D. Kuai, G. Zhang and J. J. Zaknun, Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study, Clin. Nucl. Med. 38 (2) (2013) 88–92; https://doi.org/10.1097/RLU.0b013e318279bf4d. ; 20. S. Chakraborty, T. Das, S. Banerjee, L. Balogh, P. R. Chaudhari, H. D. Sarma, A. Polyak, D. Mathe, M. Venkatesh, G. Janoki and M. R. Pillai, 177 Lu-EDTMP: a viable bone pain palliative in skeletal metastasis, Cancer Biother. Radiopharm. 23 (2) (2008) 202–213; https://doi.org/10.1089/cbr.2007.374. ; 21. C. Kumar, A. Korde, K.V. Kumari, T. Das and G. Samuel, Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177 Lu-EDTMP and Lu-EDTMP, Curr. Radiopharm . 6 (3) (2013) 146–151; https://doi.org/10.2174/18744710113069990021. ; 22. C. Kumar, R. Sharma, K. Vats, M. B Mallia, T. Das, H. Sarma and A. Dash, Comparison of the efficacy of 177 Lu-EDTMP, 177 Lu-DOTMP and 188 Re-HEDP towards bone osteosarcoma: an in vitro study, J. Radioanal. Nucl. Chem. 319 (1) (2019) 51–59; https://doi.org/10.1007/s10967-018-6283-5. ; 23. A. A. Waza, K. Andrabi and M. Ul Hussain, Adenosine-triphosphate-sensitive K + channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43), Exp. Cell Res . 318 (20) (2012) 2559–2566; https://doi.org/10.1016/j.yexcr.2012.08.004. ; 24. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35 (4) (2007) 495–516; https://doi.org/10.1080/01926230701320337. ; 25. K. J. Campbell and S. W. G. Tait, Targeting BCL-2 regulated apoptosis in cancer, Open Biol. 8 (5) (2018) Article ID 18000 (11 pages); https://doi.org/10.1098/rsob.180002. ; 26. S. Pattingre, A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider and B. Levine, Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell 122 (6) (2005) 927–939; https://doi.org/10.1016/j.cell.2005.07.002. ; 27. G. V. Chaitanya, A. J. Steven and P. P. Babu, PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration, Cell Commun. Signal. 8 (2010) Article ID 31 (11 pages); https://doi.org/10.1186/1478-811X-8-31. ; 28. E. M. Carrington, Y. Zhan, J. L. Brady, J. G. Zhang, R. M. Sutherland, N. S. Anstee, R. L. Schenk, I. B. Vikstrom, R. B. Delconte, D. Segal, N. D. Huntington, P. Bouillet, D. M. Tarlinton, D. C. Huang, A. Strasser, S. Cory, M. J. Herold and A. M. Lew, Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo, Cell Death Differ. 24 (5) (2017) 878–888; https://doi.org/10.1038/cdd.2017.30. ; 29. M. Cargnello and P. P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev. 75 (1) (2011) 50–83; https://doi.org/10.1128/MMBR.00031-10. ; 30. S. Karunakaran, U. Saeed, M. Mishra, R. K. Valli, S. D. Joshi, D. P. Meka, P. Seth and V. Ravindranath, Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, J. Neurosci. 28 (47) (2008) 12500–12509; https://doi.org/10.1523/JNEUROSCI.4511-08.2008. ; 31. Y. Wang, R. Cui, X. Zhang, Y. Qiao, X. Liu, Y. Chang, Y. Yu, F. Sun and J. Wang, SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma, Oncotarget 7 (10) (2016) 11284–11298; https://doi.org/10.18632/oncotarget.7022. ; 32. H. K. Koul, M. Pal and S. Koul, Role of p38 MAP kinase signal transduction in solid tumors, Genes Cancer 4 (9–10) (2013) 342–359; https://doi.org/10.1177/1947601913507951. ; 33. F. Engin, T. Bertin, O. Ma, M. M. Jiang, L. Wang, R. E. Sutton, L. A. Donehower and B. Lee, Notch signaling contributes to the pathogenesis of human osteosarcomas, Hum. Mol. Genet. 18 (8) (2009) 1464–1470; https://doi.org/10.1093/hmg/ddp057. ; 34. M. Tanaka, T. Setoguchi, M. Hirotsu, H. Gao, H. Sasaki, Y. Matsunoshita and S. Komiya, Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation, Br. J. Cancer 100 (12) (2009) 1957–1965; https://doi.org/10.1038/sj.bjc.6605060. ; 35. J. S. Mo, J. H. Yoon, E. J. Ann, J. S. Ahn, H. J. Baek, H. J. Lee, S. H. Kim, Y. D. Kim, M. Y. Kim and H. S. Park, Notch1 modulates oxidative stress induced cell death through suppression of apoptosis signal-regulating kinase 1, Proc. Natl. Acad. Sci. USA 110 (17) (2013) 6865–6870; https://doi.org/10.1073/pnas.1209078110. ; 36. G. Boccalini, C. Sassoli, L. Formigli, D. Bani and S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway, FASEB J , 29 (1) (2015) 239–249; https://doi.org/10.1096/fj.14-254854. ; 37. Y. Y. Tan, J. D. Wade, G. W. Tregear and R. J. Summers, Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: Characterization and effects of oestrogen treatment, Br. J. Pharmacol. 127 (1) (1999) 91–98; https://doi.org/10.1038/sj.bjp.0702517.
  • Contributed Indexing: Keywords: apoptosis; cell death; notch-1 pathway; osteosarcoma; relaxin-2
  • Substance Nomenclature: 0 (lutetium ethylenediaminetetramethylene phosphonic acid) ; 9002-69-1 (Relaxin) ; 0 (NOTCH1 protein, human)
  • Entry Date(s): Date Created: 20230118 Date Completed: 20230123 Latest Revision: 20230403
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -