Zum Hauptinhalt springen

Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.

Jimenez-Pastor, A ; Lopez-Gonzalez, R ; et al.
In: European radiology, Jg. 33 (2023-07-01), Heft 7, S. 5087-5096
Online academicJournal

Titel:
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
Autor/in / Beteiligte Person: Jimenez-Pastor, A ; Lopez-Gonzalez, R ; Fos-Guarinos, B ; Garcia-Castro, F ; Wittenberg, M ; Torregrosa-Andrés, A ; Marti-Bonmati, L ; Garcia-Fontes, M ; Duarte, P ; Gambini, JP ; Bittencourt, LK ; Kitamura, FC ; Venugopal, VK ; Mahajan, V ; Ros, P ; Soria-Olivas, E ; Alberich-Bayarri, A
Link:
Zeitschrift: European radiology, Jg. 33 (2023-07-01), Heft 7, S. 5087-5096
Veröffentlichung: Berlin : Springer International, c1991-, 2023
Medientyp: academicJournal
ISSN: 1432-1084 (electronic)
DOI: 10.1007/s00330-023-09410-9
Schlagwort:
  • Male
  • Humans
  • Prostate diagnostic imaging
  • Prostate pathology
  • Neural Networks, Computer
  • Magnetic Resonance Spectroscopy
  • Image Processing, Computer-Assisted methods
  • Magnetic Resonance Imaging methods
  • Prostatic Neoplasms diagnostic imaging
  • Prostatic Neoplasms pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Eur Radiol] 2023 Jul; Vol. 33 (7), pp. 5087-5096. <i>Date of Electronic Publication: </i>2023 Jan 24.
  • MeSH Terms: Magnetic Resonance Imaging* / methods ; Prostatic Neoplasms* / diagnostic imaging ; Prostatic Neoplasms* / pathology ; Male ; Humans ; Prostate / diagnostic imaging ; Prostate / pathology ; Neural Networks, Computer ; Magnetic Resonance Spectroscopy ; Image Processing, Computer-Assisted / methods
  • References: De Visschere P (2018) Improving the diagnosis of clinically significant prostate cancer with magnetic resonance imaging. J Belg Soc Radiol 102(1):22. (PMID: 10.5334/jbsr.14386095051) ; Cui T, Kovell RC, Terlecki RP (2016) Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature. Curr Med Res Opin 32(10):1663–1669. (PMID: 10.1080/03007995.2016.119831227264113) ; Mayo Clinic (2019) PSA test. Mayo Clinic. Available via https://www.mayoclinic.org/tests-procedures/psa-test/about/pac-20384731 . Accessed 19 Jan 2023. ; Brown LC, Ahmed HU, Faria R et al (2018) Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess 22(39):1–176. (PMID: 10.3310/hta22390300400656077599) ; Das CJ, Razik A, Netaji A, Verma S (2020) Prostate MRI-TRUS fusion biopsy: a review of the state of the art procedure. Abdom Radiol (NY) 45(7):2176–2183. (PMID: 10.1007/s00261-019-02391-831897683) ; Dai Z, Carver E, Liu C et al (2020) Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks. Adv Radiat Oncol 5(3):473–481. (PMID: 10.1016/j.adro.2020.01.005325291437280293) ; da Silva GLF, Diniz PS, Ferreira JL et al (2020) Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput 58(9):1947–1964. (PMID: 10.1007/s11517-020-02199-532566988) ; Barentsz JO, Weinreb JC, Verma S et al (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69(1):41–49. (PMID: 10.1016/j.eururo.2015.08.03826361169) ; Hötker AM, Mazaheri Y, Aras Ö (2016) Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol 206(4):756–763. (PMID: 10.2214/AJR.15.14912269009045479568) ; Sanz-Requena R, Martí-Bonmatí L, Pérez-Martínez R, García-Martí G (2016) Dynamic contrast-enhanced case-control analysis in 3T MRI of prostate cancer can help to characterize tumor aggressiveness. Eur J Radiol 85(11):2119–2126. (PMID: 10.1016/j.ejrad.2016.09.02227776667) ; Gillespie D, Kendrick C, Boon I (2020) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. ArXiv: 2011.07795. ; Bardis M, Houshyar R, Chantaduly C (2021) Segmentation of the prostate transition zone and peripheral zone on MR images with deep learning. Radiol Imaging Cancer 3(3). ; Cheng R, Lay N, Roth HR (2019) Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections. J Med Imaging (Bellingham) 6(2):024007. (PMID: 31205977) ; Litjens G, Toth R, van de Ven W et al (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373. (PMID: 10.1016/j.media.2013.12.00224418598) ; Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128. (PMID: 10.1016/j.neuroimage.2006.01.01516545965) ; Ronneberger O, Fischer P, Brox T (2015) U-Net convolutional networks for biomedical image segmentation. ArXiv: 1505.04597v1. ; Bo QZ, Turkbey B, Choyke PL (2017) Deeply-supervised CNN for prostate segmentation. ArXiv: 1703.07523. ; Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. ArXiv: 1412.6980. ; Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. ArXiv: 1712.04621. ; Smith LN (2017) Cyclical learning rates for training neural networks. ArXiv: 1506.01186. ; Srisha R, Khan A (2013) Morphological operations for image processing: understanding and its applications. Conference: National Conference on VLSI, Signal processing & Communications. ; Kim DW, Jang HY, Kim KW (2019) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. Korean J Radiol 20(3):405–410. (PMID: 10.3348/kjr.2019.0025307995716389801) ; Shahedi M, Cool DW, Romagnoli C et al (2014) Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Med Phys 41(11):113503. (PMID: 10.1118/1.489918225370674) ; Brembilla G, Dell’Oglio P, Stabile A et al (2020) Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. Eur Radiol 30(6):3383–3392. ; Zavala-Romero O, Breto AL, Xu IR et al (2020) Segmentation of prostate and prostate zones using deep learning: A multi-MRI vendor analysis. Strahlenther Onkol 196(10):932–942. (PMID: 10.1007/s00066-020-01607-x322216228418872) ; Lee DK, Sung DJ, Kim CS et al (2020) Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula. AJR Am J Roentgenol 214(6):1229–1238. (PMID: 10.2214/AJR.19.2225432208009) ; Khan Z, Yahya N, Alsaih K, Ali SSA, Meriaudeau F (2020) Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI. Sensors (Basel) 20(11):3183. (PMID: 10.3390/s2011318332503330)
  • Contributed Indexing: Keywords: Artificial intelligence; Deep learning; Diagnosis computer-assisted; Magnetic resonance imaging; Prostate
  • Entry Date(s): Date Created: 20230123 Date Completed: 20230626 Latest Revision: 20230626
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -