Zum Hauptinhalt springen

Current and future distribution of a parasite with complex life cycle under global change scenarios: Echinococcus multilocularis in Europe.

Cenni, L ; Simoncini, A ; et al.
In: Global change biology, Jg. 29 (2023-05-01), Heft 9, S. 2436-2449
Online academicJournal

Titel:
Current and future distribution of a parasite with complex life cycle under global change scenarios: Echinococcus multilocularis in Europe.
Autor/in / Beteiligte Person: Cenni, L ; Simoncini, A ; Massetti, L ; Rizzoli, A ; Hauffe, HC ; Massolo, A
Link:
Zeitschrift: Global change biology, Jg. 29 (2023-05-01), Heft 9, S. 2436-2449
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2023
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.16616
Schlagwort:
  • Animals
  • Europe
  • Ecosystem
  • Life Cycle Stages
  • Climate Change
  • Echinococcus multilocularis physiology
  • Parasites
  • Echinococcosis epidemiology
  • Echinococcosis parasitology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2023 May; Vol. 29 (9), pp. 2436-2449. <i>Date of Electronic Publication: </i>2023 Feb 23.
  • MeSH Terms: Echinococcus multilocularis* / physiology ; Parasites* ; Echinococcosis* / epidemiology ; Echinococcosis* / parasitology ; Animals ; Europe ; Ecosystem ; Life Cycle Stages ; Climate Change
  • References: Atkinson, J. A., Gray, D. J., Clements, A. C., Barnes, T. S., Mcmanus, D. P., & Yang, Y. R. (2013). Environmental changes impacting Echinococcus transmission: Research to support predictive surveillance and control. Global Change Biology, 19, 677-688. ; Bagrade, G., Snabel, V., Romig, T., Ozoliņš, J., Hüttner, M., Miterpáková, M., Ševcová, D., & Dubinský, P. (2008). Echinococcus multilocularis is a frequent parasite of red foxes (Vulpes vulpes) in Latvia. Helminthologia, 45, 157-161. ; Beaumont, L., Hughes, L., & Pitman, A. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters, 11, 1135-1146. ; Beck, R., Mihaljević, Ž., Brezak, R., Bosnić, S., Janković, I. L., & Deplazes, P. (2018). First detection of Echinococcus multilocularis in Croatia. Parasitology Research, 117, 617-621. ; Brochier, B., De Blander, H., Hanosset, R., Berkvens, D., Losson, B., & Saegerman, C. (2007). Echinococcus multilocularis and Toxocara canis in urban red foxes (Vulpes vulpes) in Brussels, Belgium. Preventive Veterinary Medicine, 80, 65-73. ; Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference. Understading AIC and BIC in model selection. Sociological Methods & Research, 33, 261-304. ; Casulli, A., Manfredi, M. T., La Rosa, G., Di Cerbo, A. R., Dinkel, A., Romig, T., Deplazes, P., Genchi, C., & Pozio, E. (2005). Echinococcus multilocularis in red foxes (Vulpes vulpes) of the Italian Alpine region: Is there a focus of autochthonous transmission? International Journal for Parasitology, 35, 1079-1083. ; Chen, M., Vernon, C., Graham, N., Hejazi, M., Huang, M., Cheng, Y., & Calvin, K. (2020). Global land use for 2015-2100 at 0.05 degrees resolution under diverse socioeconomic and climate scenarios. Scientific Data, 7, 320. ; Cizauskas, C., Carlson, C., Burgio, K., Clements, C., Dougherty, E., Harris, N., & Phillips, A. (2017). Parasite vulnerability to climate change: An evidence- based functional trait approach. Royal Society Open Science, 4, 160535. ; Craig, P. S., Giraudoux, P., Shi, D., Bartholomot, B., Barnish, G., Delattre, P., Quere, J. P., Harraga, S., Bao, G., Wang, Y., Lu, F., Ito, A., & Vuitton, D. A. (2000). An epidemiological and ecological study of human alveolar echinococcosis transmission in South Gansu, China. Acta Tropica, 77, 167-177. ; Cruz-Cardenas, G., Villasenor, J., Lopez-Mata, L., Martinez-Meyer, E., & Ortiz, E. (2014). Selection of environmental predictors for species distribution modeling in Maxent. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 20, 188-201. ; Dán, Á., Rónai, Z., Széll, Z., & Sréter, T. (2018). Prevalence and genetic characterization of Echinococcus spp. in cattle, sheep, and swine in Hungary. Parasitology Research, 117, 3019-3022. ; Danson, F. M., Craig, P. S., Man, W., Shi, D., & Giraudoux, P. (2004). Landscape dynamics and risk modeling of human alveolar echinococcosis. Photogrammetric Engineering & Remote Sensing, 70, 359-366. ; Danson, F. M., Graham, A. J., Pleydell, D. R. J., Campos-Ponce, M., Giraudoux, P., & Craig, P. S. (2003). Multi-scale spatial analysis of human alveolar echinococcosis risk in China. Parasitology, 127, S133-S141. ; Deplazes, P., Hagglin, D., Gloor, S., & Romig, T. (2004). Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends in Parasitology, 20, 77-84. ; Di Marco, M., Harwood, T., Hoskins, A., Ware, C., Hill, S., & Ferrier, S. (2019). Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling. Global Change Biology, 25, 2763-2778. ; Duscher, G., Steineck, T., Gunter, P., Prosl, H., & Joachim, A. (2005). Echinococcus multilocularis in foxes in Vienna and surrounding territories. Wiener Tierarztliche Monatsschrift, 92, 16-20. ; Eckert, J., & Deplazes, P. (1999). Alveolar echinococcosis in humans: The current situation in Central Europe and the need for countermeasures. Parasitology Today, 15, 315-319. ; Elith, J., Ferrier, S., Huettmann, F., & Leathwick, J. (2005). The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 186, 280-289. ; FAO/WHO. (2014). Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series 23. WHO. ; Federer, K., Armua-Fernandez, M. T., Hoby, S., Wenker, C., & Deplazes, P. (2015). In vivo viability of Echinococcus multilocularis eggs in a rodent model after different thermo-treatments. Experimental Parasitology, 154, 14-19. ; Fick, S., & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. ; Fielding, A., & Bell, J. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. ; Giraudoux, P., Craig, P. S., Delattre, P., Bao, G., Bartholomot, B., Harraga, S., Quéré, J. P., Raoul, F., Wang, Y., Shi, D., & Vuitton, D. A. (2003). Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasitology, 127, S121-S131. ; Giraudoux, P., Raoul, F., Pleydell, D., Li, T., Han, X., Qiu, J., Xie, Y., Wang, H., Ito, A., & Craig, P. S. (2013). Drivers of Echinococcus multilocularis transmission in China: Small mammal diversity, landscape or climate? PLoS Neglected Tropical Diseases, 7, e2045. ; Hamann, A., & Aitken, S. (2013). Conservation planning under climate change: Accounting for adaptive potential and migration capacity in species distribution models. Diversity and Distributions, 19, 268-280. ; Harrigan, R., Thomassen, H., Buermann, W., & Smith, T. (2014). A continental risk assessment of West Nile virus under climate change. Global Change Biology, 20, 2417-2425. ; Hegglin, D., Bontadina, F., & Deplazes, P. (2015). Human-wildlife interactions and zoonotic transmission of Echinococcus multilocularis. Trends in Parasitology, 31, 167-173. ; Hegglin, D., & Deplazes, P. (2013). Control of Echinococcus multilocularis: Strategies, feasibility and cost-benefit analyses. International Journal for Parasitology, 43, 327-337. ; Hijmans, R., Cameron, S., Parra, J., Jones, P., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. ; Hijmans, R. J., & Van Etten, J. (2012). raster: Geographic analysis and modeling with raster data. R package version 3.5-15, https://CRAN.R-project.org/package=raster. ; Hofer, S., Gloor, S., Muller, U., Mathis, A., Hegglin, D., & Deplazes, P. (2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology, 120, 135-142. ; Hoffmann, M., & Sillero-Zubiri, C. (2016). Vulpes vulpes, red fox. The IUCN Red List of Threatened Species. ; Johnson, E. E., Escobar, L. E., & Zambrana-Torrelio, C. (2019). An ecological framework for modeling the geography of disease transmission. Trends in Ecology & Evolution, 34, 655-668. ; Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451, 990-993. ; Jore, S., Vanwambeke, S., Viljugrein, H., Isaksen, K., Kristoffersen, A. B., Woldehiwet, Z., Johansen, B., Brun, E., Brun-Hansen, H., Westermann, S., Larsen, I. L., Ytrehus, B., & Hofshagen, M. (2014). Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites & Vectors, 7, 11. ; Kafle, P., Peller, P., Massolo, A., Hoberg, E., Leclerc, L., Tomaselli, M., & Kutz, S. (2020). Range expansion of muskox lungworms track rapid arctic warming: Implications for geographic colonization under climate forcing. Scientific Reports, 10, 17323. ; Kim, H., Rosa, I., Alkemade, R., Leadley, P., Hurtt, G., Popp, A., van Vuuren, D. P., Anthoni, P., Arneth, A., Baisero, D., Caton, E., Chaplin-Kramer, R., Chini, L., De Palma, A., Di Fulvio, F., Di Marco, M., Espinoza, F., Ferrier, S., Fujimori, S., … Pereira, H. M. (2018). A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 11, 4537-4562. ; Knapp, J., Bart, J., Giraudoux, P., Glowatzki, M. L., Breyer, I., Raoul, F., Deplazes, P., Duscher, G., Martinek, K., Dubinsky, P., Guislain, M. H., Cliquet, F., Romig, T., Malczewski, A., Gottstein, B., & Piarroux, R. (2009). Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe. PLoS Neglected Tropical Diseases, 3, e452. ; Knapp, J., Damy, S., Brillaud, J., Tissot, J. D., Navion, J., Mélior, R., Afonso, E., Hormaz, V., Gottstein, B., Umhang, G., Casulli, A., Dadeau, F., Millon, L., & Raoul, F. (2017). EWET: Data collection and interface for the genetic analysis of Echinococcus multilocularis based on EmsB microsatellite. PLoS One, 12, e0183849. ; Knapp, J., Giraudoux, P., Combes, B., Umhang, G., Boué, F., Said-Ali, Z., Aknouche, S., Garcia, C., Vacheyrou, M., Laboissière, A., Raton, V., Comte, S., Favier, S., Demerson, J. M., Caillot, C., Millon, L., & Raoul, F. (2018). Rural and urban distribution of wild and domestic carnivore stools in the context of Echinococcus multilocularis environmental exposure. International Journal for Parasitology, 48, 937-946. ; Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., … Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366-1379. ; Kutz, S. J., Hoberg, E. P., Polley, L., & Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Biological Sciences, 272, 2571-2576. ; Liccioli, S., Giraudoux, P., Deplazes, P., & Massolo, A. (2015). Wilderness in the ‘city’ revisited: Different urbes shape transmission of Echinococcus multilocularis by altering predator and prey communities. Trends in Parasitology, 31, 297-305. ; Marston, C. G., Danson, F. M., Armitage, R. P., Giraudoux, P., Pleydell, D. R. J., Wang, Q., Qui, J., & Craig, P. S. (2014). A random forest approach for predicting the presence of Echinococcus multilocularis intermediate host Ochotona spp. presence in relation to landscape characteristics in western China. Applied Geography, 55, 176-183. ; Massolo, A., Simoncini, A., & Romig, T. (2022). The ‘bridge effect’ by intermediate hosts may explain differential distributions of Echinococcus species. Trends in Parasitology, 38, 501-512. ; Matthews, J. B. R., Möller, V., van Diemen, R., Fuglestvedt, J. S., Masson-Delmotte, V., Méndez, C., Semenov, S., & Reisinge, A. (2021). Annex VII. Glossary: IPCC - Intergovernmental Panel on Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2215-2256). Cambridge University Press. ; Merow, C., Smith, M., & Silander, J. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069. ; Miterpakova, M., Dubinsky, P., Reiterova, K., & Stanko, M. (2006). Climate and environmental factors influencing Echinococcus multilocularis occurrence in the Slovak Republic. Annals of Agricultural and Environmental Medicine, 13, 235-242. ; Moffett, A., Shackelford, N., & Sarkar, S. (2007). Malaria in Africa: Vector species' niche models and relative risk maps. PLoS One, 2, e824. ; Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Intergovernmental Panel on Climate Change. ; Muscarella, R., Galante, P., Soley-Guardia, M., Boria, R., Kass, J., Uriarte, M., & Anderson, R. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecology and Evolution, 5, 1198-1205. ; Mwima, R., Gidudu, A., Mazimwe, A., & Al, E. (2017). Spatially explicit uncertainty modeling of zoonotic pathogen distribution: A case of Listeria monocytogenes in New York state, USA. Applied Geomatics, 9, 27-41. ; Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637-669. ; Patz, J. A., Epstein, P. R., Burke, T. A., & Balbus, J. M. (1996). Global climate change and emerging infectious diseases. JAMA, 275, 217-223. ; Pearson, R., & Dawson, T. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. ; Perez-Rodriguez, A., De La Hera, I., Fernandez-Gonzalez, S., & Perez-Tris, J. (2014). Global warming will reshuffle the areas of high prevalence and richness of three genera of avian blood parasites. Global Change Biology, 20, 2406-2416. ; Phillips, S., Anderson, R., & Schapire, R. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. ; Phillips, S., & Dudik, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. ; Pickles, R., Thornton, D., Feldman, R., Marques, A., & Murray, D. (2013). Predicting shifts in parasite distribution with climate change: A multitrophic level approach. Global Change Biology, 19, 2645-2654. ; Porfirio, L., Harris, R., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., Bindoff, N. L., & Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS One, 9, e113749. ; R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. ; Radosavljevic, A., & Anderson, R. (2014). Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41, 629-643. ; Raoul, F., Hegglin, D., & Giraudoux, P. (2015). Trophic ecology, behaviour and host population dynamics in Echinococcus multilocularis transmission. Veterinary Parasitology, 213, 162-171. ; Rausch, R. L. (1967). On the ecology and distribution of Echinococcus spp. (Cestoda: Taeniidae), and characteristics of their development in the intermediate host. Annales de Parasitologie Humaine et Comparée, 42, 19-63. ; Razgour, O., Forester, B., Taggart, J., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S. J., Novella-Fernandez, R., Alberdi, A., & Manel, S. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America, 116, 10418-10423. ; Rodriguez-Merino, A., Garcia-Murillo, P., Cirujano, S., & Fernandez-Zamudio, R. (2018). Predicting the risk of aquatic plant invasions in Europe: How climatic factors and anthropogenic activity influence potential species distributions. Journal for Nature Conservation, 45, 58-71. ; Rogers, D. J., & Randolph, S. E. (2006). Climate change and vector-borne diseases. Advances in Parasitology, 62, 345-381. ; Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 117, 4211-4217. ; Romig, T., Craig, P., & Pawlowski, Z. (2002). Spread of Echinococcus multilocularis in Europe? Proceedings of the NATO Advanced Research Workshop on cestode zoonoses: Echinococcosis and cysticercosis: An emergent and global problem, Poznan, Poland, 10-13 September 2000. IOS Press. ; Romig, T., Deplazes, P., Jenkins, D., Giraudoux, P., Massolo, A., Craig, P. S., Wassermann, M., Takahashi, K., & de la Rue, M. (2017). Ecology and life cycle patterns of Echinococcus species. Advances in Parasitology, 95, 213-314. ; Romig, T., Thoma, D., & Weible, A. K. (2006). Echinococcus multilocularis-A zoonosis of anthropogenic environments? Journal of Helminthology, 80, 207-212. ; Sanderson, B., Knutti, R., & Caldwell, P. (2015). A representative democracy to reduce interdependency in a multimodel ensemble. Journal of Climate, 28, 5171-5194. ; Selker, R., Love, J., Dropmann, D., & Moreno, V. (2022). The ‘jamovi’ analyses. R package version 1.6, https://cran.r-project.org/package=jmv. ; Shaikenov, B. (2006). Distribution and ecology of Echinococcus multilocularis in Central Asia. Parasitology International, 55, S213-S219. ; Staubach, C., Thulke, H. H., Tackmann, K., Hugh-Jones, M., & Conraths, F. J. (2001). Geographic information system-aided analysis of factors associated with the spatial distribution of Echinococcus multilocularis infections of foxes. American Journal of Tropical Medicine and Hygiene, 65, 943-948. ; Tackmann, K., Löschner, U., Mix, H., Staubach, C., Thulke, H. H., Ziller, M., & Conraths, F. J. (2001). A field study to control Echinococcus multilocularis infections of the red fox (Vulpes vulpes) in an endemic focus. Epidemiology and Infection, 127, 577-587. ; Taylor, K., Stouffer, R., & Meehl, G. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485-498. ; Taylor, L. H., Latham, S. M., & Woolhouse, M. E. J. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 983-989. ; Thompson, A., Deplazes, P., Lymbery, A., Thompson, R., & Lymbery, A. (2017). Echinococcus and echinococcosis, part B preface. Advances in Parasitology, 96, XIII-XIV. ; Thuiller, W., Gueguen, M., Renaud, J., Karger, D., & Zimmermann, N. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, 1446. ; Tolnai, Z., Szell, Z., & Sreter, T. (2013). Environmental determinants of the spatial distribution of Echinococcus multilocularis in Hungary. Veterinary Parasitology, 198, 292-297. ; Torgerson, P. R., Keller, K., Magnotta, M., & Ragland, N. (2010). The global burden of alveolar echinococcosis. PLoS Neglected Tropical Diseases, 4, e722. ; Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363. ; Umhang, G., Richomme, C., Boucher, J. M., Guedon, G., & Boué, F. (2013). Nutrias and muskrats as bioindicators for the presence of Echinococcus multilocularis in new endemic areas. Veterinary Parasitology, 197, 283-287. ; Vale, C., Tarroso, P., & Brito, J. (2014). Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Diversity and Distributions, 20, 20-33. ; Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., & Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351-1364. ; Veit, P., Bilger, B., Schad, V., Schäfer, J., Frank, W., & Lucius, R. (1995). Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology, 110(Pt 1), 79-86. ; Vuitton, D. A., Demonmerot, F., Knapp, J., Richou, C., Grenouillet, F., Chauchet, A., Vuitton, L., Bresson-Hadni, S., & Millon, L. (2015). Clinical epidemiology of human AE in Europe. Veterinary Parasitology, 213, 110-120. ; Vuitton, D. A., Zhou, H., Bresson-Hadni, S., Wang, Q., Piarroux, M., Raoul, F., & Giraudoux, P. (2003). Epidemiology of alveolar echinococcosis with particular reference to China and Europe. Parasitology, 127(Suppl), S87-S107. ; Wahlström, H., Isomursu, M., Hallgren, G., Christensson, D., Cedersmyg, M., Wallensten, A., Hjertqvist, M., Davidson, R. K., Uhlhorn, H., & Hopp, P. (2011). Combining information from surveys of several species to estimate the probability of freedom from Echinococcus multilocularis in Sweden, Finland and mainland Norway. Acta Veterinaria Scandinavica, 53, 9. ; Warren, D., Wright, A., Seifert, S., & Shaffer, H. (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 20, 334-343. ; Weynat, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P. R., La Rovere, E., & Yohe, G. (2009). Report of 2.6 versus 2.9 Watts/m2 RCPP Evaluation Panel. IPCC Secretariat. ; Zurell, D., Franklin, J., Konig, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43, 1261-1277.
  • Contributed Indexing: Keywords: Echinococcus multilocularis; Europe; climate change; ecosystem health; environmental niche; global change; species distribution modelling
  • Entry Date(s): Date Created: 20230223 Date Completed: 20230406 Latest Revision: 20230526
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -