Zum Hauptinhalt springen

In Vivo Tracking of Dendritic Cell Migration.

Tomura, M
In: Methods in molecular biology (Clifton, N.J.), Jg. 2618 (2023), S. 39-53
academicJournal

Titel:
In Vivo Tracking of Dendritic Cell Migration.
Autor/in / Beteiligte Person: Tomura, M
Zeitschrift: Methods in molecular biology (Clifton, N.J.), Jg. 2618 (2023), S. 39-53
Veröffentlichung: Totowa, NJ : Humana Press ; <i>Original Publication</i>: Clifton, N.J. : Humana Press,, 2023
Medientyp: academicJournal
ISSN: 1940-6029 (electronic)
DOI: 10.1007/978-1-0716-2938-3_3
Schlagwort:
  • Animals
  • Mice
  • Cell Movement
  • Antigens
  • Adaptive Immunity
  • Lymph Nodes
  • Mice, Inbred C57BL
  • Dendritic Cells
  • Proteins
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Methods Mol Biol] 2023; Vol. 2618, pp. 39-53.
  • MeSH Terms: Dendritic Cells* ; Proteins* ; Animals ; Mice ; Cell Movement ; Antigens ; Adaptive Immunity ; Lymph Nodes ; Mice, Inbred C57BL
  • References: Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483. https://doi.org/10.1038/nri1845. (PMID: 10.1038/nri184516691244) ; Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. https://doi.org/10.1038/32588. (PMID: 10.1038/325889521319) ; Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17:30–48. https://doi.org/10.1038/nri.2016.116. (PMID: 10.1038/nri.2016.11627890914) ; Tomura M, Hata A, Matsuoka S et al (2014) Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep 4:1–11. https://doi.org/10.1038/srep06030. (PMID: 10.1038/srep06030) ; Tomura M, Ikebuchi R, Moriya T, Kusumoto Y (2021) Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 355:109127. https://doi.org/10.1016/j.jneumeth.2021.109127. (PMID: 10.1016/j.jneumeth.2021.10912733722643) ; Tsutsui H, Karasawa S, Shimizu H et al (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238. https://doi.org/10.1038/sj.embor.7400361. (PMID: 10.1038/sj.embor.7400361157317651299271) ; Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215. (PMID: 10.1146/annurev-immunol-051116-05221528226228) ; Moriya T, Kitagawa K, Hayakawa Y et al (2021) Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity. iScience 24:102424. https://doi.org/10.1016/j.isci.2021.102424. (PMID: 10.1016/j.isci.2021.102424339977028102907) ; Yasuda I, Shima T, Moriya T et al (2020) Dynamic changes in the phenotype of dendritic cells in the uterus and uterine draining lymph nodes after coitus. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.557720. ; Bhingare AC, Ohno T, Tomura M et al (2014) Dental pulp dendritic cells migrate to regional lymph nodes. J Dent Res 93:288–293. https://doi.org/10.1177/0022034513518223. (PMID: 10.1177/002203451351822324378366) ; Nakanishi Y, Ikebuchi R, Chtanova T et al (2017) Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol 11:437–448. https://doi.org/10.1038/mi.2017.64. (PMID: 10.1038/mi.2017.6428766553) ; Ikebuchi R, Teraguchi S, Vandenbon A et al (2016) A rare subset of skin-tropic regulatory T cells expressing Il10/Gzmb inhibits the cutaneous immune response. Sci Rep 6. https://doi.org/10.1038/srep35002. ; Ikebuchi R, Fujimoto M, Nakanishi Y et al (2019) Functional phenotypic diversity of regulatory T cells remaining in inflamed skin. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01098. ; Hampton HR, Bailey J, Tomura M et al (2015) Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat Commun 6. https://doi.org/10.1038/ncomms8139. ; Nakamizo S, Egawa G, Tomura M et al (2015) Dermal Vγ4 + γδ T cells possess a migratory potency to the draining lymph nodes and modulate CD8 + T-cell activity through TNF-α production. J Invest Dermatol 135:1007. https://doi.org/10.1038/jid.2014.516. (PMID: 10.1038/jid.2014.51625493651) ; Saito T, Yano M, Ohki Y et al (2017) Occludin expression in epidermal γδ T cells in response to epidermal stress causes them to migrate into draining lymph nodes. J Immunol 199:62–71. https://doi.org/10.4049/jimmunol.1600848. (PMID: 10.4049/jimmunol.160084828566372) ; Kästele V, Mayer J, Lee ES et al (2021) Intestinal-derived ILCs migrating in lymph increase IFNγ production in response to Salmonella Typhimurium infection. Mucosal Immunol 14:717. https://doi.org/10.1038/s41385-020-00366-3. (PMID: 10.1038/s41385-020-00366-3334145248075955) ; Torcellan T, Hampton HR, Bailey J et al (2017) In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1618446114. ; Ikebuchi R, Moriya T, Ueda M, Yasuda I, Kusumoto Y, Tatyana Chtanova MT (2021) Recruitment, retention, and migration underpin functional phenotypic heterogeneity of regulatory T cells in tumors. J Immunol 207:771. https://doi.org/10.4049/jimmunol.2100135. (PMID: 10.4049/jimmunol.210013534290103) ; Tomura M, Yoshida N, Tanaka J et al (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci 105:10871–10876. https://doi.org/10.1073/pnas.0802278105. (PMID: 10.1073/pnas.0802278105186632252504797) ; Tomura M, Honda T, Tanizaki H et al (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest 120:883–893. https://doi.org/10.1172/JCI40926. (PMID: 10.1172/JCI40926201793542827959) ; Tomura M, Itoh K, Kanagawa O, Alerts E (2010) Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J Immunol 184:4646–4653. https://doi.org/10.4049/jimmunol.0903946. (PMID: 10.4049/jimmunol.090394620304829) ; Tomura M (2018) New tools for imaging of immune systems: visualization of cell cycle, cell death, and cell movement by using the mice lines expressing Fucci, SCAT3.1, and Kaede and KikGR. Methods Mol Biol 1763:165–174. https://doi.org/10.1007/978-1-4939-7762-8_16. (PMID: 10.1007/978-1-4939-7762-8_1629476498) ; Tomura M, Kabashima K (2013) Analysis of cell movement between skin and other anatomical sites in vivo using photoconvertible fluorescent protein “kaede”-transgenic mice. Methods Mol Biol 961:279–286. https://doi.org/10.1007/978-1-62703-227-8_18. (PMID: 10.1007/978-1-62703-227-8_1823325651) ; Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99:12651–12656. https://doi.org/10.1073/pnas.202320599. (PMID: 10.1073/pnas.20232059912271129130515) ; Futamura K, Sekino M, Hata A et al (2015) Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytom Part A 87:830. https://doi.org/10.1002/cyto.a.22725. (PMID: 10.1002/cyto.a.22725)
  • Contributed Indexing: Keywords: Dendritic cells; In vivo photo labeling; KikGR mouse; Migration; Photoconvertible protein; Tracking
  • Substance Nomenclature: 0 (Proteins) ; 0 (Antigens)
  • Entry Date(s): Date Created: 20230311 Date Completed: 20230314 Latest Revision: 20230424
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -