Zum Hauptinhalt springen

Measurement of neuro-energetics and neurotransmission in the rat olfactory bulb using <superscript>1</superscript> H and <superscript>1</superscript> H-[ <superscript>13</superscript> C] NMR spectroscopy.

Chowdhury, GMI ; Behar, KL ; et al.
In: NMR in biomedicine, Jg. 37 (2024-06-01), Heft 6, S. e4957
Online academicJournal

Titel:
Measurement of neuro-energetics and neurotransmission in the rat olfactory bulb using <superscript>1</superscript> H and <superscript>1</superscript> H-[ <superscript>13</superscript> C] NMR spectroscopy.
Autor/in / Beteiligte Person: Chowdhury, GMI ; Behar, KL ; Mason, GF ; Rothman, DL ; de Graaf RA
Link:
Zeitschrift: NMR in biomedicine, Jg. 37 (2024-06-01), Heft 6, S. e4957
Veröffentlichung: Chichester : Wiley ; <i>Original Publication</i>: London : Heyden & Son, 1988-, 2024
Medientyp: academicJournal
ISSN: 1099-1492 (electronic)
DOI: 10.1002/nbm.4957
Schlagwort:
  • Animals
  • Male
  • Energy Metabolism
  • Rats
  • Carbon-13 Magnetic Resonance Spectroscopy
  • Glutamine metabolism
  • gamma-Aminobutyric Acid metabolism
  • Magnetic Resonance Spectroscopy methods
  • Olfactory Bulb metabolism
  • Olfactory Bulb diagnostic imaging
  • Synaptic Transmission physiology
  • Rats, Sprague-Dawley
  • Proton Magnetic Resonance Spectroscopy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [NMR Biomed] 2024 Jun; Vol. 37 (6), pp. e4957. <i>Date of Electronic Publication: </i>2023 May 11.
  • MeSH Terms: Olfactory Bulb* / metabolism ; Olfactory Bulb* / diagnostic imaging ; Synaptic Transmission* / physiology ; Rats, Sprague-Dawley* ; Proton Magnetic Resonance Spectroscopy* ; Animals ; Male ; Energy Metabolism ; Rats ; Carbon-13 Magnetic Resonance Spectroscopy ; Glutamine / metabolism ; gamma-Aminobutyric Acid / metabolism ; Magnetic Resonance Spectroscopy / methods
  • References: Shepherd GM, Greer CA. Olfactory bulb. In: Shepherd GM, ed. The Synaptic Organization of the Brain. 3rd ed. Oxford University Press; 1990:133‐169. ; Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis. 2012;46(3):527‐552. doi:10.1016/j.nbd.2011.10.026. ; Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol. 2019;15(1):11‐24. doi:10.1038/s41582‐018‐0097‐5. ; Xydakis MS, Albers MW, Holbrook EH, et al. Post‐viral effects of COVID‐19 in the olfactory system and their implications. Lancet Neurol. 2021;20(9):753‐761. doi:10.1016/S1474‐4422(21)00182‐4. ; Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62(11):1728‐1733. doi:10.1001/archneur.62.11.1728. ; Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F‐FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390‐398. doi:10.2967/jnumed.107.045385. ; Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T. Reduced olfactory bulb volume in post‐traumatic and post‐infectious olfactory dysfunction. Neuroreport. 2005;16(5):475‐478. doi:10.1097/00001756‐200504040‐00011. ; Rombaux P, Duprez T, Hummel T. Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology. 2009;47(1):3‐9. ; Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J. Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. Am J Neuroradiol. 2011;32(4):677‐681. doi:10.3174/ajnr.A2350. ; Yang X, Renken R, Hyder F, et al. Dynamic mapping at the laminar level of odor‐elicited responses in rat olfactory bulb by functional MRI. Proc Natl Acad Sci U S A. 1998;95(13):7715‐7720. doi:10.1073/pnas.95.13.7715. ; Xu F, Kida I, Hyder F, Shulman RG. Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc Natl Acad Sci U S A. 2000;97(19):10601‐10606. doi:10.1073/pnas.180321397. ; Yang QX, Dardzinski BJ, Li S, Eslinger PJ, Smith MB. Multi‐gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med. 1997;37(3):331‐335. doi:10.1002/mrm.1910370304. ; Sobel N, Prabhakaran V, Zhao Z, et al. Time course of odorant‐induced activation in the human primary olfactory cortex. J Neurophysiol. 2000;83(1):537‐551. doi:10.1152/jn.2000.83.1.537. ; Saar G, Cheng N, Belluscio L, Koretsky AP. Laminar specific detection of APP induced neurodegeneration and recovery using MEMRI in an olfactory based Alzheimer's disease mouse model. NeuroImage. 2015;118:183‐192. doi:10.1016/j.neuroimage.2015.05.045. ; Drobyshevsky A, Robinson AM, Derrick M, et al. Sensory deficits and olfactory system injury detected by novel application of MEMRI in newborn rabbit after antenatal hypoxia–ischemia. NeuroImage. 2006;32(3):1106‐1112. doi:10.1016/j.neuroimage.2006.06.002. ; Cross DJ, Flexman JA, Anzai Y, Morrow TJ, Maravilla KR, Minoshima S. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. NeuroImage. 2006;32(3):1265‐1272. doi:10.1016/j.neuroimage.2006.04.229. ; Florian CL, Williams SR, Bhakoo KK, Noble MD. Regional and developmental variations in metabolite concentration in the rat brain and eye: a study using 1H NMR spectroscopy and high performance liquid chromatography. Neurochem Res. 1996;21(9):1065‐1074. doi:10.1007/BF02532417. ; de Graaf RA, Chowdhury GM, Behar KL. Quantification of high‐resolution 1H NMR spectra from rat brain extracts. Anal Chem. 2011;83(1):216‐224. doi:10.1021/ac102285c. ; Bálentová S, Hnilicová P, Kalenská D, et al. Effect of whole‐brain irradiation on the specific brain regions in a rat model: metabolic and histopathological changes. Neurotoxicology. 2017;60:70‐81. doi:10.1016/j.neuro.2017.03.005. ; Kim J, Choi IY, Duff KE, Lee P. Progressive pathological changes in neurochemical profile of the hippocampus and early changes in the olfactory bulbs of Tau transgenic mice (rTg4510). Neurochem Res. 2017;42(6):1649‐1660. doi:10.1007/s11064‐017‐2298‐5. ; Wang J, Jiang L, Jiang Y, Ma X, Chowdhury GM, Mason GF. Regional metabolite levels and turnover in the awake rat brain under the influence of nicotine. J Neurochem. 2010;113(6):1447‐1458. doi:10.1111/j.1471‐4159.2010.06684.x. ; Bagga P, Patel AB. Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. Neurochem Int. 2012;60(2):177‐185. doi:10.1016/j.neuint.2011.10.016. ; Bagga P, Chugani AN, Patel AB. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: a 13C NMR study. Neurochem Int. 2016;92:25‐34. doi:10.1016/j.neuint.2015.11.006. ; Chowdhury GM, Mason GF, Behar KL, Rothman DL, de Graaf RA. Measurement of metabolic rates in rat olfactory bulb by 1H and 1H–[13C] NMR in vivo. Proc Int Soc Magn Reson Med. 2011;19:2252. ; Adriany G, Gruetter R. A half‐volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson. 1997;125(1):178‐184. doi:10.1006/jmre.1997.1113. ; de Graaf RA, Behar KL. Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal Chem. 2003;75(9):2100‐2104. doi:10.1021/ac020782%2B. ; de Graaf RA, Chowdhury GM, Brown PB, Rothman DL, Behar KL. In situ 3D magnetic resonance metabolic imaging of microwave‐irradiated rodent brain: a new tool for metabolomics research. J Neurochem. 2009;109(2):494‐501. doi:10.1111/j.1471‐4159.2009.05967.x. ; Patel AB, Chowdhury GM, de Graaf RA, Rothman DL, Shulman RG, Behar KL. Cerebral pyruvate carboxylase flux is unaltered during bicuculline‐seizures. J Neurosci Res. 2005;79(1/2):128‐138. doi:10.1002/jnr.20311. ; Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3(6):823‐833. doi:10.1002/mrm.1910030602. ; Gruetter R. Automatic, localized in vivo adjustment of all first‐ and second‐order shim coils. Magn Reson Med. 1993;29(6):804‐811. doi:10.1002/mrm.1910290613. ; de Graaf RA. In Vivo NMR Spectroscopy: Principles and Techniques. Wiley; 2019. doi:10.1002/9781119382461. ; Tannus A, Garwood M. Improved performance of frequency‐swept pulses using offset‐independent adiabaticity. J Magn Reson A. 1996;120(1):133‐137. doi:10.1006/jmra.1996.0110. ; de Graaf RA, Nicolay K. Adiabatic water suppression using frequency selective excitation. Magn Reson Med. 1998;40(5):690‐696. doi:10.1002/mrm.1910400508. ; de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med. 2006;56(2):386‐394. doi:10.1002/mrm.20946. ; de Graaf RA, Chowdhury GM, Behar KL. Quantification of high‐resolution 1H–[13C] NMR spectra from rat brain extracts. Anal Chem. 2014;86(10):5032‐5038. doi:10.1021/ac5006926. ; Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672‐679. doi:10.1002/mrm.1910300604. ; Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129‐153. doi:10.1002/1099‐1492(200005)13:3%3C129::AID‐NBM619%3E3.0.CO;2‐V. ; Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A. 2005;102(15):5588‐5593. doi:10.1073/pnas.0501703102. ; Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H–[13C]‐NMR. J Cereb Blood Flow Metab. 2010;30(6):1200‐1213. doi:10.1038/jcbfm.2010.2. ; Waniewski RA, Martin DL. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci. 1998;18(14):5225‐5233. doi:10.1523/JNEUROSCI.18‐14‐05225.1998. ; Mason GF, Falk Petersen K, de Graaf RA, Kanamatsu T, Otsuki T, Rothman DL. A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1‐13C]glucose. Brain Res Brain Res Protoc. 2003;10(3):181‐190. doi:10.1016/S1385‐299X(02)00217‐9. ; Mason GF, Martin DL, Martin SB, et al. Decrease in GABA synthesis rate in rat cortex following GABA‐transaminase inhibition correlates with the decrease in GAD67 protein. Brain Res. 2001;914(1/2):81‐91. doi:10.1016/S0006‐8993(01)02778‐0. ; McNair LM, Mason GF, Chowdhury GM, et al. Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2‐13C]/[1‐13C]glucose infusion and 1H–[13C]NMR ex vivo. J Cereb Blood Flow Metab. 2022;42(8):1507‐1523. doi:10.1177/0271678X221074211. ; van Eijsden P, Behar KL, Mason GF, Braun KP, de Graaf RA. In vivo neurochemical profiling of rat brain by 1H–[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission. J Neurochem. 2010;112(1):24‐33. doi:10.1111/j.1471‐4159.2009.06428.x. ; Juchem C, Brown PB, Nixon TW, McIntyre S, Rothman DL, de Graaf RA. Multicoil shimming of the mouse brain. Magn Reson Med. 2011;66(3):893‐900. doi:10.1002/mrm.22850. ; Juchem C, Herman P, Sanganahalli BG, et al. DYNAmic Multi‐coIl TEchnique (DYNAMITE) shimming of the rat brain at 11.7 T. NMR Biomed. 2014;27(8):897‐906. doi:10.1002/nbm.3133. ; Michaeli S, Garwood M, Zhu XH, et al. Proton T2 relaxation study of water, N‐acetylaspartate, and creatine in human brain using Hahn and Carr–Purcell spin echoes at 4T and 7T. Magn Reson Med. 2002;47(4):629‐633. doi:10.1002/mrm.10135. ; Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med. 2003;50(1):24‐32. doi:10.1002/mrm.10497. ; Nawroth JC, Greer CA, Chen WR, Laughlin SB, Shepherd GM. An energy budget for the olfactory glomerulus. J Neurosci. 2007;27(36):9790‐9800. doi:10.1523/JNEUROSCI.1415‐07.2007. ; Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133‐1145. doi:10.1097/00004647‐200110000‐00001. ; Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A. 1998;95(1):316‐321. doi:10.1073/pnas.95.1.316. ; Duarte JM, Lanz B, Gruetter R. Compartmentalized cerebral metabolism of [1,6‐13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Front Neuroenergetics. 2011;3:3. ; Duarte JM, Gruetter R. Glutamatergic and GABAergic energy metabolism measured in the rat brain by 13C NMR spectroscopy at 14.1 T. J Neurochem. 2013;126(5):579‐590. doi:10.1111/jnc.12333. ; Hu X, Levin DN, Lauterbur PC, Spraggins T. SLIM: spectral localization by imaging. Magn Reson Med. 1988;8(3):314‐322. doi:10.1002/mrm.1910080308. ; Rowlands BD, Klugmann M, Rae CD. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J Neurochem. 2017;140(6):903‐918. doi:10.1111/jnc.13916. ; Yang J, Li SS, Bacher J, Shen J. Quantification of cortical GABA‐glutamine cycling rate using in vivo magnetic resonance signal of [2‐13C]GABA derived from glia‐specific substrate [2‐13C]acetate. Neurochem Int. 2007;50(2):371‐378. doi:10.1016/j.neuint.2006.09.011. ; Patel AB, de Graaf RA, Mason GF, et al. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab. 2004;24(9):972‐985. doi:10.1097/01.WCB.0000126234.16188.71.
  • Grant Information: R21 AA018210 United States AA NIAAA NIH HHS; R01 DA021785 United States DA NIDA NIH HHS; R01 NS34813 United States GF NIH HHS; R01DK27121 United States GF NIH HHS; R01 NS034813 United States NS NINDS NIH HHS; R01 DK027121 United States DK NIDDK NIH HHS; R21 AA018210 United States GF NIH HHS; UL1 TR001863 United States TR NCATS NIH HHS; R21 AA019803 United States GF NIH HHS; R21 AA019803 United States AA NIAAA NIH HHS; R01 DA021785 United States GF NIH HHS
  • Contributed Indexing: Keywords: 1H MRS; GABA; dynamic metabolism; olfactory bulb
  • Substance Nomenclature: 0RH81L854J (Glutamine) ; 56-12-2 (gamma-Aminobutyric Acid)
  • Entry Date(s): Date Created: 20230423 Date Completed: 20240508 Latest Revision: 20240510
  • Update Code: 20240510
  • PubMed Central ID: PMC10590826

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -