Zum Hauptinhalt springen

Climatic drought impacts on key ecosystem services of a low mountain region in Germany.

Al-Qubati, A ; Zhang, L ; et al.
In: Environmental monitoring and assessment, Jg. 195 (2023-06-02), Heft 7, S. 800
Online academicJournal

Titel:
Climatic drought impacts on key ecosystem services of a low mountain region in Germany.
Autor/in / Beteiligte Person: Al-Qubati, A ; Zhang, L ; Pyarali, K
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 195 (2023-06-02), Heft 7, S. 800
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2023
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-023-11397-1
Schlagwort:
  • Environmental Monitoring
  • Germany
  • Soil
  • Water
  • Climate Change
  • Ecosystem
  • Droughts
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2023 Jun 02; Vol. 195 (7), pp. 800. <i>Date of Electronic Publication: </i>2023 Jun 02.
  • MeSH Terms: Ecosystem* ; Droughts* ; Environmental Monitoring ; Germany ; Soil ; Water ; Climate Change
  • References: Ahmed, K. R., Paul-Limoges, E., Rascher, U., & Damm, A. (2020). A first assessment of the 2018 European drought impact on ecosystem evapotranspiration. Remote Sensing, 13(1), 16. https://doi.org/10.3390/RS13010016. (PMID: 10.3390/RS13010016) ; Arend, M., Link, R. M., Zahnd, C., Hoch, G., Schuldt, B., & Kahmen, A. (2022). Lack of hydraulic recovery as a cause of post-drought foliage reduction and canopy decline in European beech. New Phytologist, 234(4), 1195–1205. https://doi.org/10.1111/NPH.18065. (PMID: 10.1111/NPH.18065) ; ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, A. und A. A. V. B. C. (2002). Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. ATV-DVWK-Regelwerk ; Merkblatt ; 504 (Stand: Sep.). Hennef: GFA. http://slubdd.de/katalog?TN_libero_mab23546357 . Accessed 29 June 2022. ; Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., & Fan, L., et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 6(24). https://doi.org/10.1126/SCIADV.ABA2724/SUPPL_FILE/ABA2724_SM.PDF. ; Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the standardised precipitation-evapotranspiration index. https://cran.r-project.org/package=SPEI . Accessed 29 June 2022. ; Bernhofer, C., Franke, J., Fischer, S., Kirsten, L., Körner, P., & Kostrowski, D., et al. (2015). Analyse der Klimaentwicklung in Sachsen. Schriftenreihe des LFULG 03/2015, Freistaat Sachsen, Staatsministerium für Umwelt und Landwirtschaft. https://publikationen.sachsen.de/bdb/artikel/23868 . Accessed 15 June 2022. ; Bleiker, C. (2022). Rivers across Europe are too dry, too low and too warm | Europe | News and current affairs from around the continent | DW | 10.08.2022. https://www.dw.com/en/rivers-across-europe-are-too-dry-too-low-and-too-warm/a-62758853 . Accessed 15 August 2022. ; Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G. J., & Schall, P., et al. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. 24(6), 473–482. https://doi.org/10.1080/02827580903418224. ; Bundesanstalt für Landwirtschaft und Ernährung. (2021). Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2021. Bonn. https://www.ble.de/DE/BZL/Daten-Berichte/Wald/wald_node.html . Accessed 11 March 2023. ; Caldwell, P., Sun, G., McNulty, S. G., Cohen, E. C., & Moore Myers, J. A. (2012). Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US. Hydrology and Earth System Sciences, 16(8), 2839–2857. https://doi.org/10.5194/HESS-16-2839-2012. (PMID: 10.5194/HESS-16-2839-2012) ; Caldwell, P., Sun, G., McNulty, S., Moore Myers, J., Cohen, E., Herring, R., & Martinez, E. (2019). WaSSI ecosystem services model user guide v1.2. https://map.wassiweb.fs.usda.gov/help/wassiuserguide_v1_2.pdf . Accessed 9 July 2021. ; Carvalho-Santos, C., Honrado, J. P., & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69–80. https://doi.org/10.1016/J.ECOCOM.2014.09.001. (PMID: 10.1016/J.ECOCOM.2014.09.001) ; Cheng, H., Lin, C., Wang, L., Xiong, J., Peng, L., & Zhu, C. (2020). The influence of different forest characteristics on non-point source pollution: A case study at Chaohu basin, China. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/IJERPH17051790. ; Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529–533. https://doi.org/10.1038/nature03972. (PMID: 10.1038/nature03972) ; Cohen, J. G., Christlieb, N., Thompson, I., Hasan, F., Churchill, C. W., Stemock, B., et al. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16(6), 065012. https://doi.org/10.1088/1748-9326/ABF004. (PMID: 10.1088/1748-9326/ABF004) ; Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/FPLS.2013.00442/BIBTEX. (PMID: 10.3389/FPLS.2013.00442/BIBTEX) ; COPA COGECA. (2003). Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry. Fact sheets of the Committee of Agricultural Organisations in the European Union and the General Committee for Agricultural Cooperation in the European U. http://docs.gip-ecofor.org/libre/COPA_COGECA_2004.pdf . Accessed 08 Aug 2022. ; Copernicus Global Land Service. (2022). Gross dry matter productivity (GDMP) collection 1km version 2. European Environment Agency (EEA). https://land.copernicus.eu/global/products/dmp . Accessed 10 Oct 2021. ; Copernicus Land Monitoring Service, E. U. (2012a). Corine land cover 2012a. European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012a . Accessed 05 Jan 2022. ; Copernicus Land Monitoring Service, E. U. (2012b). Imperviousness density 2012b. European Environment Agency (EEA). https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2012b .  Accessed 25 Nov 2021. ; Copernicus Land Monitoring Service, E. U. (2016). European digital elevation model (EU-DEM), version 1.1. European Environment Agency (EEA). https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 . Accessed 23 June 2021. ; Dardanelli, J. L., Bachmeier, O. A., Sereno, R., & Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Research, 54(1), 29–38. https://doi.org/10.1016/S0378-4290(97)00017-8. (PMID: 10.1016/S0378-4290(97)00017-8) ; Debaeke, P., Pellerin, S., & Scopel, E. (2017). Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cahiers Agricultures, 26(3), 34002. https://doi.org/10.1051/CAGRI/2017028. (PMID: 10.1051/CAGRI/2017028) ; Dukat, P., Bednorz, E., Ziemblińska, K., & Urbaniak, M. (2022). Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorology and Atmospheric Physics, 134(1), 1–21. https://doi.org/10.1007/S00703-022-00858-W/FIGURES/13. (PMID: 10.1007/S00703-022-00858-W/FIGURES/13) ; EFFIS. (2022). EFFIS - Statistics portal. https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates . Accessed 15 August 2022. ; European Environment Agency. (2017). Climate change, impacts and vulnerability in Europe 2016: An indicator-based report. Publications Office. https://doi.org/10.2800/534806. (PMID: 10.2800/534806) ; Federal Ministry of Food and Agriculture. (2022). BMEL - Klimaschutz - Trockenheit und Dürre im Jahr 2018. https://www.bmel.de/DE/themen/landwirtschaft/klimaschutz/duerre-2018.html . Accessed 16 August 2022. ; Franke, J., Goldberg, V., Eichelmann, U., Freydank, E., & Bernhofer, C. (2004). Statistical analysis of regional climate trends in Saxony. Germany. Climate Research, 27(2), 145–150. https://doi.org/10.3354/CR027145. (PMID: 10.3354/CR027145) ; German Aerospace Center. (2022). Concern about German forests - DLR Portal. https://www.dlr.de/content/en/articles/news/2022/01/20220221_concern-about-german-forests.html . Accessed 22 March 2023. ; German Environment Agency. (2019). 2019 monitoring report on the German strategy for adaptation to climate change. Dessau-Roßlau. https://www.umweltbundesamt.de/sites/default/files/medien/421/publikationen/das_2019_monitoring_report_bf.pdf . Accessed 01 Aug 2022. ; German Federal Cabinet. (2008). German strategy for adaptation to climate change. Berlin, The. https://www.bmuv.de/fileadmin/bmu-import/files/english/pdf/application/pdf/das_gesamt_en_bf.pdf. ; Hamed, K. H., & Ramachandra Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X. (PMID: 10.1016/S0022-1694(97)00125-X) ; Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. International Association of Scientific Hydrology. Publication, 63, 52–62. ; Hänsel, S., Ustrnul, Z., Łupikasza, E., & Skalak, P. (2019). Assessing seasonal drought variations and trends over Central Europe. Advances in Water Resources, 127, 53–75. https://doi.org/10.1016/J.ADVWATRES.2019.03.005. (PMID: 10.1016/J.ADVWATRES.2019.03.005) ; Hauffe, C., Pahner, S., Rohm, P., Pfützner, B., Kloecking, B., Mey, S., et al. (2022). KliWES 2.0 – Klimawandel und Wasserhaushalt, Schriftenreihe, Heft 17/2022. Dresden. https://publikationen.sachsen.de/bdb/artikel/40252 . Accessed 11 Sept 2022. ; Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., et al. (2021). What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? Forest Ecology and Management, 479, 118558. https://doi.org/10.1016/J.FORECO.2020.118558. (PMID: 10.1016/J.FORECO.2020.118558) ; Ionita, M., & Nagavciuc, V. (2021). Changes in drought features at the European level over the last 120 years. Natural Hazards and Earth System Sciences, 21(5), 1685–1701. https://doi.org/10.5194/nhess-21-1685-2021. (PMID: 10.5194/nhess-21-1685-2021) ; Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—Is non-management an option? Annals of Forest Science, 76(2), 1–13. https://doi.org/10.1007/S13595-019-0827-X/FIGURES/8. (PMID: 10.1007/S13595-019-0827-X/FIGURES/8) ; Kendall, M. G. (1948). Rank correlation methods. London: Charles Griffin. ; Klauer, B., Rode, M., Schiller, J., Franko, U., & Mewes, M. (2011). Decision support for the selection of measures according to the requirements of the EU water framework directive. https://doi.org/10.1007/s11269-011-9944-5. ; Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424–425, 264–277. https://doi.org/10.1016/J.JHYDROL.2012.01.011. (PMID: 10.1016/J.JHYDROL.2012.01.011) ; Koren, V., Smith, M., & Duan, Q. (2003). Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. 239–254. https://doi.org/10.1002/9781118665671.CH18. ; Kosztra, B., Büttner, G., Hazeu, G., & Arnold, S. (2017). Updated CLC illustrated nomenclature guidelines. European Environment Agency: Wien, Austria. https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf . Accessed 04 March 2023. ; Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., & Arrighi, J., et al. (2021). Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Atribution. https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf . Accessed 08 August 2022. ; Krupková, L., Havránková, K., Krejza, J., Sedlák, P., & Marek, M. V. (2019). Impact of water scarcity on spruce and beech forests. Journal of Forestry Research, 30(3), 899–909. https://doi.org/10.1007/S11676-018-0642-5/TABLES/3. (PMID: 10.1007/S11676-018-0642-5/TABLES/3) ; Li, X., & Xiao, J. (2019). Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 2019, 11(21), 2563. https://doi.org/10.3390/RS11212563. (PMID: 10.3390/RS11212563) ; Li, C., Sun, G., Cohen, E., Zhang, Y., Xiao, J., McNulty, S. G., & Meentemeyer, R. K. (2020). Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States. Journal of Hydrology, 583, 124581. https://doi.org/10.1016/J.JHYDROL.2020.124581. (PMID: 10.1016/J.JHYDROL.2020.124581) ; Liu, C. L. C., Kuchma, O., & Krutovsky, K. V. (2018). Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15, e00419. https://doi.org/10.1016/J.GECCO.2018.E00419. (PMID: 10.1016/J.GECCO.2018.E00419) ; Liu, N., Dobbs, G. R., Caldwell, P. V, Miniat, C. F., Bolstad, P. V, Nelson, S., & Sun, G. (2020). Quantifying the role of State and private forest lands in providing surface drinking water supply for the Southern United States. Gen. Tech. Rep. SRS-248. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station, 248, 1–405. https://doi.org/10.2737/SRS-GTR-248. ; Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187. (PMID: 10.2307/1907187) ; McDonald, J. E. (1961). On the ratio of evaporation to precipitation. Bulletin of the American Meteorological Society, 42(3), 185–189. https://doi.org/10.1175/1520-0477-42.3.185. (PMID: 10.1175/1520-0477-42.3.185) ; McKee, T. B., Doesken, N. J., Kleist, J., et al. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17, 179–183. ; Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/TRANS.58.10715. (PMID: 10.13031/TRANS.58.10715) ; Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6. (PMID: 10.1016/0022-1694(70)90255-6) ; Neary, D. G., Ice, G. G., & Jackson, C. R. (2009). Linkages between forest soils and water quality and quantity. Forest Ecology and Management, 258(10), 2269–2281. https://doi.org/10.1016/J.FORECO.2009.05.027. (PMID: 10.1016/J.FORECO.2009.05.027) ; Nendel, C., Kersebaum, K. C., Mirschel, W., & Wenkel, K. O. (2014). Testing farm management options as climate change adaptation strategies using the MONICA model. European Journal of Agronomy, 52, 47–56. https://doi.org/10.1016/J.EJA.2012.09.005. (PMID: 10.1016/J.EJA.2012.09.005) ; Natural Resources Conservation Service (NRCS). (2004). National engineering handbook: Part 630—hydrology. United States Department of Agriculture-Natural Resources Conservation Service: Washington, DC, USA. ; Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 1–27. https://doi.org/10.1038/s41597-020-0534-3. (PMID: 10.1038/s41597-020-0534-3) ; Patakamuri, S. K., Muthiah, K., & Sridhar, V. (2020). Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State, India. Water, 12(1), 211. https://doi.org/10.3390/W12010211. (PMID: 10.3390/W12010211) ; Patakamuri, S. K., & O’Brien, N. (2020). modifiedmk: Modified versions of Mann Kendall and Spearman’s rho trend tests. https://cran.r-project.org/package=modifiedmk . Accessed 25 June 2022. ; Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (applied Statistics), 28(2), 126–135. https://doi.org/10.2307/2346729. (PMID: 10.2307/2346729) ; Pluntke, T., Kronenberg, R., Hänsel, S., Rumpf, D., Zimmermann, F., Matschullat, J., & Bernhofer, C. (2021). Erfassung und Abschätzung von Trockenheitsmerkmalen in Sachsen. Dresden. https://doi.org/10.4126/FRL01-006425413. (PMID: 10.4126/FRL01-006425413) ; Pohlert, T. (2020). trend: Non-parametric trend tests and change-point detection. https://cran.r-project.org/package=trend . Accessed 25 June 2022. ; Prescher, A. K., Grünwald, T., & Bernhofer, C. (2010). Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7–8), 1016–1025. https://doi.org/10.1016/J.AGRFORMET.2010.03.008. (PMID: 10.1016/J.AGRFORMET.2010.03.008) ; Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biology, 15(3), 483–495. https://doi.org/10.1111/J.1438-8677.2012.00670.X. (PMID: 10.1111/J.1438-8677.2012.00670.X) ; Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., & Thober, S., et al. (2022). The 2018–2020 multi-year drought sets a new benchmark in Europe. Earth’s Future, 10(3), e2021EF002394. https://doi.org/10.1029/2021EF002394. ; Riediger, J., Breckling, B., Nuske, R. S., & Schröder, W. (2014). Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environmental Sciences Europe, 26(1), 1–13. https://doi.org/10.1186/S12302-014-0018-1/FIGURES/7. (PMID: 10.1186/S12302-014-0018-1/FIGURES/7) ; Rode, M., Klauer, B., Petry, D., Volk, M., Wenk, G., & Wagenschein, D. (2008). Integrated nutrient transport modelling with respect to the implementation of the European WFD: The Weiße Elster Case Study, Germany. Water SA, 34(4), 490–496. https://doi.org/10.4314/wsa.v34i4. (PMID: 10.4314/wsa.v34i4) ; Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrology and Earth System Sciences Discussions, 2016, 1–36. https://doi.org/10.5194/hess-2016-30. (PMID: 10.5194/hess-2016-30) ; Rouault, G., Candau, J. N., Lieutier, F., Nageleisen, L. M., Martin, J. C., & Warzée, N. (2006). Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science, 63(6), 613–624. https://doi.org/10.1051/FOREST:2006044. (PMID: 10.1051/FOREST:2006044) ; Rukh, S., Sanders, T. G. M., Krüger, I., Schad, T., & Bolte, A. (2023). Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length—A review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests, 14(2), 248. https://doi.org/10.3390/F14020248. (PMID: 10.3390/F14020248) ; Running, S., Mu, Q., Zhao, M., & Moreno, A. (2019). MOD16A2GF MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD16A2GF.006. ; Sartorius, C., Hillenbrand, T., & Walz, R. (2011). Impact and cost of measures to reduce nutrient emissions from wastewater and storm water treatment in the German Elbe river basin. Regional Environmental Change, 11(2), 377–391. https://doi.org/10.1007/S10113-010-0140-6/FIGURES/4. (PMID: 10.1007/S10113-010-0140-6/FIGURES/4) ; Saxon State Ministry for Energy, Climate Protection, E. and A. (LFULG). (2016). Blühbeginn des Apfels. https://www.klima.sachsen.de/download/IL5Apfelbluete.pdf . Accessed 1 August 2022. ; Schuler, L. J., Bugmann, H., & Snell, R. S. (2017). From monocultures to mixed-species forests: Is tree diversity key for providing ecosystem services at the landscape scale? Landscape Ecology, 32(7), 1499–1516. https://doi.org/10.1007/S10980-016-0422-6/FIGURES/7. (PMID: 10.1007/S10980-016-0422-6/FIGURES/7) ; Schwärzel, K., Menzer, A., Clausnitzer, F., Spank, U., Häntzschel, J., Grünwald, T., et al. (2009). Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). Agricultural and Forest Meteorology, 149(11), 1994–2006. https://doi.org/10.1016/J.AGRFORMET.2009.07.006. (PMID: 10.1016/J.AGRFORMET.2009.07.006) ; Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934. (PMID: 10.1080/01621459.1968.10480934) ; Seppälä, R. (2009). A global assessment on adaptation of forests to climate change. Scandinavian Journal of Forest Research, 24(6), 469–472. https://doi.org/10.1080/02827580903378626. ; Smets, B., Swinnen, E., & Van Hoolstm, R. (2019). Copernicus global land operations “vegetation and energy” “CGLOPS-1” - product user manual: Dry matter productivity(DMP) - gross dry matter productivity (GDMP) - collection 1km - version 2. Brussels, Belgium. https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_DMP1km-V2_I3.22.pdf. ; Šrámek, V., Hellebrandová, K. N., & Fadrhonsová, V. (2019). Interception and soil water relation in Norway spruce stands of different age during the contrasting vegetation seasons of 2017 and 2018. Journal of Forest Science, 65(2), 51–60. (PMID: 10.17221/135/2018-JFS) ; Sun, G., Caldwell, P., Noormets, A., McNulty, S. G., Cohen, E., & Myers, J. M., et al. (2011). Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. Journal of Geophysical Research: Biogeosciences, 116(G3), 0–05. https://doi.org/10.1029/2010JG001573. ; Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., & Zhang, Y. (2015a). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. Forest Ecology and Management, 353, 269–279. https://doi.org/10.1016/J.FORECO.2015.04.002. (PMID: 10.1016/J.FORECO.2015.04.002) ; Sun, S., Sun, G., Caldwell, P., McNulty, S. G., Cohen, E., Xiao, J., & Zhang, Y. (2015b). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model. Forest Ecology and Management, 353, 260–268. https://doi.org/10.1016/J.FORECO.2015.03.054. (PMID: 10.1016/J.FORECO.2015.03.054) ; Swinnen, E., Van Hoolst, R., & Toté, C. (2019). Copernicus global land operations “vegetation and energy” quality assessment report for dry matter productivity (DMP) and gross dry matter productivity (GDMP). Collection 1 km, version 2. Brussels, Belgium. https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_DMP1km-V2_I1.11.pdf . Accessed 07 June 2022. ; Toreti, A., Masante, D., Acosta, N. J., Bavera, D., Cammalleri, C., De, J. A., et al. (2022). Drought in Europe July 2022. Publications Office of the European Union. https://doi.org/10.2760/014884. (PMID: 10.2760/014884) ; Trenczek, J., Lühr, O., Eiserbeck, L., Sandhövel, M., & Ibens, D. (2022). Schäden der Dürre- und Hitzeextreme 2018 und 2019. Eine ex-post-Analyse. Projektbericht “Kosten durch Klimawandelfolgen”. https://www.prognos.com/sites/default/files/2022-07/Prognos_KlimawandelfolgenDeutschland_DetailuntersuchungHitzesommer18_19_AP2_3a_.pdf . Accessed 16 Aug 2022. ; Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1. (PMID: 10.1175/2009JCLI2909.1) ; Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27. https://doi.org/10.1175/2012EI000434.1. (PMID: 10.1175/2012EI000434.1) ; Vitolo, C., Di Napoli, C., Di Giuseppe, F., Cloke, H. L., & Pappenberger, F. (2019). Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environment International, 127, 21–34. https://doi.org/10.1016/J.ENVINT.2019.03.008. (PMID: 10.1016/J.ENVINT.2019.03.008) ; Weilnhammer, V., Schmid, J., Mittermeier, I., Schreiber, F., Jiang, L., Pastuhovic, V., et al. (2021). Extreme weather events in Europe and their health consequences – A systematic review. International Journal of Hygiene and Environmental Health, 233, 113688. https://doi.org/10.1016/J.IJHEH.2021.113688. (PMID: 10.1016/J.IJHEH.2021.113688) ; Zal, N., Bastrup-Birk, A., Bariamis, G., Scholz, M., Tekidou, A., Kasperidus, H. D., et al. (2015). Water-retention potential of Europe’s forests : a European overview to support natural water-retention measures. European Environment Agency Technical Report 13/2015: Copenhagen, Denmark. https://doi.org/10.2800/790618. ; Zambrano-Bigiarini M. (2020). hydroTSM: Time series management, analysis and interpolation for hydrological modelling. https://github.com/hzambran/hydroTSM . Accessed 29 June 2022. ; Zhang, Y., Song, C., Sun, G., Band, L. E., McNulty, S., Noormets, A., et al. (2016). Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agricultural and Forest Meteorology, 223, 116–131. https://doi.org/10.1016/J.AGRFORMET.2016.04.003. (PMID: 10.1016/J.AGRFORMET.2016.04.003)
  • Contributed Indexing: Keywords: Carbon sequestration; Climatic drought assessment; Ecosystem service modelling; Low mountain region; Water yield
  • Substance Nomenclature: 0 (Soil) ; 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20230602 Date Completed: 20230605 Latest Revision: 20230605
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -