Zum Hauptinhalt springen

Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.

Feng, X ; Jia, G ; et al.
In: Medical physics, Jg. 50 (2023-07-01), Heft 7, S. 4651-4663
Online academicJournal

Titel:
Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
Autor/in / Beteiligte Person: Feng, X ; Jia, G ; Peng, J ; Huang, L ; Liang, X ; Zhang, H ; Liu, Y ; Zhang, B ; Zhang, Y ; Sun, M ; Li, P ; Miao, Q ; Wang, Y ; Xi, L ; Hu, K ; Li, T ; Hui, H ; Tian, J
Link:
Zeitschrift: Medical physics, Jg. 50 (2023-07-01), Heft 7, S. 4651-4663
Veröffentlichung: 2017- : Hoboken, NJ : John Wiley and Sons, Inc. ; <i>Original Publication</i>: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics., 2023
Medientyp: academicJournal
ISSN: 2473-4209 (electronic)
DOI: 10.1002/mp.16551
Schlagwort:
  • Tomography, X-Ray Computed
  • Magnetic Fields
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Phys] 2023 Jul; Vol. 50 (7), pp. 4651-4663. <i>Date of Electronic Publication: </i>2023 Jun 09.
  • MeSH Terms: Tomography, X-Ray Computed* ; Magnetic Fields*
  • References: Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214-1217. https://doi.org/10.1038/nature03808. ; Vogel P, Ruckert MA, Kampf T, et al. Superspeed bolus visualization for vascular magnetic particle imaging. IEEE Trans Med Imag. 2020;39(6):2133-2139. https://doi.org/10.1109/TMI.2020.2965724. ; Liang X, Wang K, Du J, Tian J, Zhang H. The first visualization of chemotherapy-induced tumor apoptosis via magnetic particle imaging in a mouse model. Phys Med Biol. 2020;65(19):195004. https://doi.org/10.1088/1361-6560/abad7c. ; Wu LC, Zhang Y, Steinberg G, et al. A review of magnetic particle imaging and perspectives on neuroimaging. Am J Neuroradiol. 2019;40(2):206. https://doi.org/10.3174/ajnr.A5896. ; Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50(14):8102-8146. https://doi.org/10.1039/D0CS00260G. ; Haegele J, Vaalma S, Panagiotopoulos N, et al. Multi-color magnetic particle imaging for cardiovascular interventions. Phys Med Biol. 2016;61(16):N415-N426. https://doi.org/10.1088/0031-9155/61/16/N415. ; Jyoti D, Gordon-Wylie SW, Reeves DB, Paulsen KD, Weaver JB. Distinguishing nanoparticle aggregation from viscosity changes in MPS/MSB detection of biomarkers. Sensors. 2022;22(17):6690. https://doi.org/10.3390/s22176690. ; Deissler RJ, Wu Y, Martens MA. Dependence of Brownian and Neel relaxation times on magnetic field strength. Med Phys. 2014;41(1):012301. https://doi.org/10.1118/1.4837216. ; Utkur M, Saritas EU. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation. Med Phys. 2022;49(4):2590-2601. https://doi.org/10.1002/mp.15509. ; Rahmer J, Halkola A, Gleich B, Schmale I, Borgert J. First experimental evidence of the feasibility of multi-color magnetic particle imaging. Phys Med Biol. 2015;60(5):1775-1791. https://doi.org/10.1088/0031-9155/60/5/1775. ; Deissler RJ, Martens MA. Dependence of the magnetization response on the driving field amplitude for magnetic particle imaging and spectroscopy. IEEE Trans Magn. 2015;51(2):1-4. https://doi.org/10.1109/TMAG.2014.2322579. ; Croft LR, Goodwill PW, Konkle JJ, et al. Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys. 2016;43(1):424-435. https://doi.org/10.1118/1.4938097. ; Arslan MT, Ozaslan AA, Kurt S, Muslu Y, Saritas EU. Rapid TAURUS for relaxation-based color magnetic particle imaging. IEEE Trans Med Imag. 2022:1-1. https://doi.org/10.1109/TMI.2022.3195694. ; He L, Liu W, Xie Q, Pi S, Morais PC. A fast and remote magnetonanothermometry for a liquid environment. Meas Sci Technol. 2015;27(2):025901. https://doi.org/10.1088/0957-0233/27/2/025901. ; Zhong J, Liu W, Du Z, César de Morais P, Xiang Q, Xie Q. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles. Nanotechnology. 2012;23(7):075703. https://doi.org/10.1088/0957-4484/23/7/075703. ; Zhong J, Schilling M, Ludwig F. Simultaneous imaging of magnetic nanoparticle concentration, temperature, and viscosity. Phys Rev Appl. Nov 2021;16(5):054005. https://doi.org/10.1103/PhysRevApplied.16.054005. ; Shasha C, Teeman E, Krishnan KM. Harmonic simulation study of simultaneous nanoparticle size and viscosity differentiation. IEEE Magn Lett. 2017;8:1-5. https://doi.org/10.1109/LMAG.2017.2754238. ; Tay ZW, Hensley D, Ma J, et al. Pulsed excitation in magnetic particle imaging. IEEE Trans Med Imag. 2019;38(10):2389-2399. https://doi.org/10.1109/TMI.2019.2898202. ; Mohn F, Knopp T, Boberg M, Thieben F, Szwargulski P, Graeser M. System matrix based reconstruction for pulsed sequences in magnetic particle imaging. IEEE Trans Med Imag. 2022;41(7):1862-1873. https://doi.org/10.1109/TMI.2022.3149583. ; Björk M, Zachariah D, Kullberg J, Stoica P. A multicomponent T2 relaxometry algorithm for myelin water imaging of the brain. Magn Reson Med. Jan 2016;75(1):390-402. https://doi.org/10.1002/mrm.25583. ; Hajj CE, Moussaoui S, Collewet G, Musse M. Multi-exponential transverse relaxation times estimation from magnetic resonance images under Rician noise and spatial regularization. IEEE Trans Image Process. 2020;29:6721-6733. https://doi.org/10.1109/TIP.2020.2993114. ; Bailey WM. Fast fluid attenuated inversion recovery (FLAIR) imaging and associated artefacts in magnetic resonance imaging (MRI). Radiography. 2007;13(4):283-290. https://doi.org/10.1016/j.radi.2006.03.005. ; Bydder GM, Hajnal JV, Young IR. MRI: Use of the inversion recovery pulse sequence. Clin Radiol. 1998;53(3):159-176. https://doi.org/10.1016/S0009-9260(98)80096-2. ; Petrov OV, Stapf S. Multicomponent analysis of T1 relaxation in bovine articular cartilage at low magnetic fields. Magn Reson Med. 2019;81(5):2858-2868. https://doi.org/10.1002/mrm.27624. ; Bui TQ, Biacchi AJ, Dennis CL, Tew WL, Walker ARH, Woods SI. Advanced characterization of magnetization dynamics in iron oxide magnetic nanoparticle tracers. Appl Phys Lett. 2022;120(1):012407. https://doi.org/10.1063/5.0077016. ; Ota S, Takemura Y. Characterization of Néel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles. J Phys Chem C. 2019;123(47):28859-28866. https://doi.org/10.1021/acs.jpcc.9b06790. ; Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z. Laplace inversion of low-resolution NMR relaxometry data using sparse representation methods. Concepts Magn Reson. 2013;42(3):72-88. https://doi.org/10.1002/cmr.a.21263. ; Szwargulski P, Wilmes M, Javidi E, et al. Monitoring intracranial cerebral hemorrhage using multicontrast real-time magnetic particle imaging. ACS Nano. 2020;14(10):13913-13923. https://doi.org/10.1021/acsnano.0c06326. ; Utkur M, Muslu Y, Saritas EU. Relaxation-based viscosity mapping for magnetic particle imaging. Phys Med Biol. 2017;62(9):3422-3439. https://doi.org/10.1088/1361-6560/62/9/3422. ; Jia G, Huang L, Wang Z, et al. Gradient-based pulsed excitation and relaxation encoding in magnetic particle imaging. IEEE Trans Med Imaging. 2022;41(12):3725-3733. https://doi.org/10.1109/TMI.2022.3193219. ; Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM J Sci Comput. 1998;20(1):33-61. https://doi.org/10.1137/S1064827596304010. ; Cheng N-S. Formula for the viscosity of a glycerol−water mixture. Ind Eng Chem Res. 2008;47(9):3285-3288. https://doi.org/10.1021/ie071349z. ; Tong W, Hui H, Shang W, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Research Paper. Theranostics. 2021;11(2):506-521. https://doi.org/10.7150/thno.49812. ; Ahlborg M, Friedrich T, Göttsche T, et al. First dedicated balloon catheter for magnetic particle imaging. IEEE Trans Med Imag. 2022;41(11):3301-3308. https://doi.org/10.1109/TMI.2022.3183948. ; Storath M, Brandt C, Hofmann M, et al. Edge preserving and noise reducing reconstruction for magnetic particle imaging. IEEE Trans Med Imag. 2017;36(1):74-85. https://doi.org/10.1109/TMI.2016.2593954. ; Tognarelli JM, Dawood M, Shariff MIF, et al. Magnetic resonance spectroscopy: principles and techniques: Lessons for clinicians. J Clin Exp Hepatol. 2015;5(4):320-328. https://doi.org/10.1016/j.jceh.2015.10.006. ; Trisnanto SB, Ota S, Takemura Y. Two-step relaxation process of colloidal magnetic nanoclusters under pulsed fields. Appl Phys Express. 2018;11(7):075001. https://doi.org/10.7567/apex.11.075001. ; Dieckhoff J, Eberbeck D, Schilling M, Ludwig F. Magnetic-field dependence of Brownian and Néel relaxation times. J Appl Phys. 2016;119(4):043903. https://doi.org/10.1063/1.4940724. ; Yue R, Zhang C, Xu L, et al. Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem. 2022;8(7):1956-1981. https://doi.org/10.1016/j.chempr.2022.03.009. ; Rahmer J, Wirtz D, Bontus C, Borgert J, Gleich B. Interactive magnetic catheter steering with 3-D real-time feedback using multi-Color magnetic particle imaging. IEEE Trans Med Imag. 2017;36(7):1449-1456. https://doi.org/10.1109/TMI.2017.2679099. ; Fujimoto K, Noda Y, Kawai N, et al. Comparison of mono-exponential, bi-exponential, and stretched exponential diffusion-weighted MR imaging models in differentiating hepatic hemangiomas from liver metastases. Eur J Radiol. 2021;141:109806. https://doi.org/10.1016/j.ejrad.2021.109806. ; Omer N, Galun M, Stern N, Blumenfeld-Katzir T, Ben-Eliezer N. Data-driven algorithm for myelin water imaging: probing subvoxel compartmentation based on identification of spatially global tissue features. Magn Reson Med. 2022;87(5):2521-2535. https://doi.org/10.1002/mrm.29125. ; Rückert MA, Vogel P, Kampf T, Kullmann WH, Jakob PM, Behr VC. Simulating the signal generation of rotational drift spectroscopy. IEEE Trans Magn. 2015;51(2):1-4. https://doi.org/10.1109/TMAG.2014.2335536. ; Rückert MA, Vogel P, Vilter A, Kullman WH, Jakob PM, Behr VC. Rotational drift spectroscopy for magnetic particle ensembles. IEEE Trans Magn. 2015;51(2):1-4. https://doi.org/10.1109/TMAG.2014.2334138.
  • Grant Information: 2022YFB3203800 National Key Research and Development Program of China; 2017YFA0700401 National Key Research and Development Program of China; 62027901 National Natural Science Foundation of China; 11974267 National Natural Science Foundation of China; 82227802 National Key Scientific Instrument and Equipment Development Projects of China
  • Contributed Indexing: Keywords: magnetic nanoparticles; magnetic particle imaging; relaxation time; viscosity mapping
  • Entry Date(s): Date Created: 20230609 Date Completed: 20230711 Latest Revision: 20230718
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -