Zum Hauptinhalt springen

Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach.

Saraswat, A ; Ram, S ; et al.
In: Environmental monitoring and assessment, Jg. 195 (2023-06-19), Heft 7, S. 863
Online academicJournal

Titel:
Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach.
Autor/in / Beteiligte Person: Saraswat, A ; Ram, S ; Raza, MB ; Islam, S ; Sharma, S ; Omeka, ME ; Behera, B ; Jena, RK ; Rashid, A ; Golui, D
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 195 (2023-06-19), Heft 7, S. 863
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2023
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-023-11476-3
Schlagwort:
  • Child
  • Adult
  • Humans
  • Soil
  • Environmental Monitoring methods
  • Heavy Metal Poisoning
  • India
  • Risk Assessment
  • China
  • Metals, Heavy analysis
  • Soil Pollutants analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2023 Jun 19; Vol. 195 (7), pp. 863. <i>Date of Electronic Publication: </i>2023 Jun 19.
  • MeSH Terms: Metals, Heavy* / analysis ; Soil Pollutants* / analysis ; Child ; Adult ; Humans ; Soil ; Environmental Monitoring / methods ; Heavy Metal Poisoning ; India ; Risk Assessment ; China
  • References: Adimalla, N. (2020). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75. (PMID: 10.1007/s10653-019-00270-1) ; Adimalla, N., Qian, H., & Wang, H. (2019). Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environmental Monitoring and Assessment, 191(4), 1–15. (PMID: 10.1007/s10661-019-7408-1) ; Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406. (PMID: 10.1016/j.ecoenv.2020.110406) ; Ali, L., Rashid, A., Khattak, S. A., Gao, X., Jehan, S., & Javed, A. (2021). Geochemical modeling, fate distribution, and risk exposure of potentially toxic metals in the surface sediment of the Shyok suture zone, northern Pakistan. International Journal of Sediment Research, 36(5), 656–667. (PMID: 10.1016/j.ijsrc.2021.02.006) ; Banik, S. (2018). Small scale industries in India: Opportunities and challenges. International Journal of Creative Research Thoughts, 6(1), 337–341. ; Birch, G. (2013). Use of Sedimentary-metal indicators in assessment of estuarine system. In J. Shroder Jr., A. Switzer, D. Kennedy (Eds.), Treatise on geomorphology, v14. Academic Press, San Diego. ; Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153. (PMID: 10.1016/j.scitotenv.2015.01.025) ; Chen, Y., Li, X., Zhu, T., Han, Y., & Lv, D. (2017). PM2. 5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Science of the Total Environment, 586, 255–264. (PMID: 10.1016/j.scitotenv.2017.01.214) ; Cheng, Z., Chen, L.-J., Li, H.-H., Lin, J.-Q., Yang, Z.-B., Yang, Y.-X., Xu, X.-X., Xian, J.-R., Shao, J.-R., & Zhu, X.-M. (2018). Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Science of the Total Environment, 619, 621–629. (PMID: 10.1016/j.scitotenv.2017.11.144) ; D’Souza, R., Varun, M., Pratas, J., & Paul, M. S. (2013). Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: Implications for phytoremediation. Soil and Sediment Contamination: An International Journal, 22(1), 1–20. (PMID: 10.1080/15320383.2012.697936) ; Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., Khodanpur, J. P., & Biradar, M. (2019). Primary concept of nickel toxicity–an overview. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 141–152. (PMID: 10.1515/jbcpp-2017-0171) ; Datta, S., Rao, A. S., & Ganeshamurthy, A. (1997). Effect of electrolytes coupled with variable stirring on soil pH. Journal of the Indian Society of Soil Science, 45(1), 185–187. ; De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley-Black analysis of forest soil organic carbon: Recovery, limitations and uncertainty. Soil Use and Management, 23(3), 221–229. (PMID: 10.1111/j.1475-2743.2007.00084.x) ; Devi, R., Behera, B., Raza, M. B., Mangal, V., Altaf, M. A., Kumar, R., Tiwari, R. K., Lal, M. K., & Singh, B. (2021). An insight into microbes mediated heavy metal detoxification in plants: a review. Journal of Soil Science and Plant Nutrition, 2(1), 914–936. ; Dhyan, S., Chhonkar, P. K., & Dwivedi, B. S. (2005). Manual on soil, plant and water analysis. Westville Publishing House. ; Du, H., & Lu, X. (2022). Spatial distribution and source apportionment of heavy metal (loid) s in urban topsoil in Mianyang. Southwest China. Scientific Reports, 12(1), 1–12. ; Fageria, N. K., & Nascente, A. S. (2014). Management of soil acidity of South American soils for sustainable crop production. Advances in Agronomy, 128, 221–275. (PMID: 10.1016/B978-0-12-802139-2.00006-8) ; Gashi, F., Frančišković-Bilinski, S., Bilinski, H., Shala, A., & Gashi, A. (2017). Impact of Kishnica and Badovci flotation tailing Dams on levels of heavy metals in water of Graçanica river (Kosovo). Journal of Chemistry, 2017. https://doi.org/10.1155/2017/5172647. ; Ghani, J., Nawab, J., Faiq, M. E., Ullah, S., Alam, A., Ahmad, I., Ali, S. W., Khan, S., Ahmad, I., Muhammad, A., Rahman, S. A. U., Muhammad, A., Rashid, A., & Hasan, S. Z. (2022). Multi-geostatistical analyses of the spatial distribution and source apportionment of potentially toxic elements in urban children’s park soils in Pakistan: A risk assessment study. Environmental Pollution, 311, 119961. (PMID: 10.1016/j.envpol.2022.119961) ; Golui, D., Datta, S., Dwivedi, B., Meena, M., Varghese, E., Sanyal, S., Ray, P., Shukla, A. K., & Trivedi, V. (2019). Assessing soil degradation in relation to metal pollution–A multivariate approach. Soil and Sediment Contamination: An International Journal, 28(7), 630–649. (PMID: 10.1080/15320383.2019.1640660) ; Golui, D., Datta, S. P., Dwivedi, B., Meena, M., Ray, P., & Trivedi, V. (2021). A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environmental Earth Sciences, 80(19), 1–12. (PMID: 10.1007/s12665-021-09988-7) ; Goumenou, M., & Tsatsakis, A. (2019). Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicology Reports, 6, 632–636. https://doi.org/10.1016/j.toxrep.2019.06.010. (PMID: 10.1016/j.toxrep.2019.06.010) ; Halim, M., Majumder, R., & Zaman, M. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arabian Journal of Geosciences, 8(6), 3391–3401. (PMID: 10.1007/s12517-014-1480-1) ; Huang, J., Guo, S., Zeng, G.-M., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W., & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, 49–58. (PMID: 10.1016/j.envpol.2018.08.038) ; Imai, A., & Gloyna, E. (1990). Effects of pH and oxidation state of chromium on the behavior of chromium in the activated sludge process. Water Research, 24(9), 1143–1150. (PMID: 10.1016/0043-1354(90)90178-9) ; Jiang, F., Ren, B., Hursthouse, A., Deng, R., & Wang, Z. (2019). Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environmental Science and Pollution Research, 26, 16556–16567. (PMID: 10.1007/s11356-019-04997-3) ; Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663. (PMID: 10.3390/ijerph13070663) ; Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 27(10), 10317–10327. (PMID: 10.1007/s11356-020-07642-6) ; Kaur, J., Bhatti, S. S., Bhat, S. A., Nagpal, A. K., Kaur, V., & Katnoria, J. K. (2021). Evaluating potential ecological risks of heavy metals of textile effluents and soil samples in vicinity of textile industries. Soil Systems, 5(4), 63. (PMID: 10.3390/soilsystems5040063) ; Kirschbaum, M. U. F. (2006). The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518. (PMID: 10.1016/j.soilbio.2006.01.030) ; Kumar, V., Chopra, A., Srivastava, S., Tomar, V., Thakur, R., & Singh, J. (2016). Impact of glass industry effluent disposal on soil characteristics in Haridwar region. India Journal of Environmental Health, 2(2), 1–10. ; Liu, L., Chen, H., Cai, P., Liang, W., & Huang, Q. (2009). Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 163(2–3), 563–567. (PMID: 10.1016/j.jhazmat.2008.07.004) ; Ma, L., & Han, C. (2019). Water quality ecological risk assessment with sedimentological approach. In Water Quality-Science, Assessments and Policy (pp. 1–6): IntechOpen. ; Majhi, P. K., Raza, B., Behera, P. P., Singh, S. K., Shiv, A., Mogali, S. C., Bohi, T. K., Patra, B., & Behera, B. (2022). Future-proofing plants against climate change: A path to ensure sustainable food systems. In Biodiversity, functional ecosystems and sustainable food production (pp. 73–116). Springer International Publishing. https://doi.org/10.1007/978-3-031-07434-9_3. ; McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management Module, 8(2), 1–12. ; Meena, R., Datta, S., Golui, D., Dwivedi, B., & Meena, M. (2016). Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Environmental Science and Pollution Research, 23(14), 14269–14283. (PMID: 10.1007/s11356-016-6556-x) ; Mikel, D. K. (2002). Quality assurance guidance document: model quality assurance project plan for the national air toxics trends stations. https://www.epa.gov/sites/default/files/2021-03/documents/natts_model_qapp.pdf . Accessed 15 June 2023. ; Mohammed, A. S., Kapri, A., & Goel, R. (2011). Heavy metal pollution: Source, impact, and remedies. In: Biomanagement of metal-contaminated soils (pp. 1–28). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1914-9_1. ; Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118. ; Muller, G. (1981). Schwermetallbelstung der sedimente des neckars und seiner nebenflusse: Eine estandsaufnahme. Chemical Zeitung, 105, 157–164. ; Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve. Iran. Chemical Speciation & Bioavailability, 26(2), 99–105. (PMID: 10.3184/095422914X13951584546986) ; Omeka, M. E., Igwe, O., & Unigwe, C. O. (2022). An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria. Environmental Monitoring and Assessment, 194(3), 1–30. (PMID: 10.1007/s10661-022-09856-2) ; Pan, L., Wang, Y., Ma, J., Hu, Y., Su, B., Fang, G., Wang, L., & Xiang, B. (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environmental Science and Pollution Research, 25(2), 1055–1069. (PMID: 10.1007/s11356-017-0513-1) ; Pawar, A. B., Kumawat, C., Verma, A. K., Meena, R. K., Raza, M. B., Anil, A. S., & Trivedi, V. K. (2017). Threshold limits of soil in relation to various soil functions and crop productivity. International Journal of Current Microbiology and Applied Sciences, 6(5), 2293–2302. (PMID: 10.20546/ijcmas.2017.605.256) ; Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trac Trends in Analytical Chemistry, 17(5), 289–298. (PMID: 10.1016/S0165-9936(97)00119-2) ; Rashid, A., Khan, S., Ayub, M., Sardar, T., Jehan, S., Zahir, S., Khan, M. S., Muhammad, J., Khan, R., Ali, A., & Ullah, H. (2019). Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere, 225, 785–795. (PMID: 10.1016/j.chemosphere.2019.03.066) ; Rashid, A., Farooqi, A., Gao, X., Zahir, S., Noor, S., & Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai. Pakistan. Chemosphere, 243, 125409. (PMID: 10.1016/j.chemosphere.2019.125409) ; Rashid, A., Ayub, M., Khan, S., Ullah, Z., Ali, L., Gao, X., Li, C., & EI-Serehy, H. A., Kaushik, P., & Rasool, A. (2022). Hydrogeochemical assessment of carcinogenic and non-carcinogenic health risks of potentially toxic elements in aquifers of the Hindukush ranges, Pakistan: insights from groundwater pollution indexing, GIS-based, and multivariate statistical approaches. Environmental Science and Pollution Research, 29(50), 75744–75768. https://doi.org/10.1007/s11356-022-21172-3. (PMID: 10.1007/s11356-022-21172-3) ; Raza, M. B., Datta, S. P., Golui, D., Barman, M., Das, T. K., Sahoo, R. N., Upadhyay, D., Rahman, M. M., Behera, B., & Naveenkumar, A. (2023a). Synthesis and performance evaluation of novel bentonite-supported nanoscale zero valent iron for remediation of arsenic contaminated water and soil. Molecules, 28(5), 2168. ; Raza, B., Sahoo, J., Behera, B., Anil, A. S., Tiwari, R. K., & Lal, M. K. (2023b). Soil microorganisms and nematodes for bioremediation and amelioration of polluted soils. In: Biology and Biotechnology of Environmental Stress Tolerance in Plants (pp. 3–39). Apple Academic Press. ; Reena, S., Neetu, G., Anurag, M., & Rajiv, G. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253. (PMID: 10.4103/0253-7613.81505) ; Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78. (PMID: 10.1016/j.jenvman.2016.10.023) ; Sahibin, A., Zulfahmi, A., Lai, K., Errol, P., & Talib, M. (2002). Heavy metals content of soil under vegetables cultivation in Cameron Highland. In: Proceedings of the regional symposium on environment and natural resources. Hotel Renaissance Kuala Lumpur, Malaysia, (Vol. 1, pp. 660–667). ; Salomons, W., & Förstner, U. (2012). Metals in the Hydrocycle: Springer Science & Business Media. ; Samal, S. K., Datta, S. P., Dwivedi, B. S., Meena, M. C., Nogiya, M., Choudhary, M., Golui, D., & Raza, M. B. (2023). Phytoextraction of nickel, lead, and chromium from contaminated soil using sunflower, marigold, and spinach: comparison of efficiency and fractionation study. Environmental Science and Pollution Research, 30(17), 50847–50863. https://doi.org/10.1007/s11356-023-25806-y. ; Saraswat, A., Nath, T., Omeka, M., Unigwe, C. O., Anyanwu, I. E., Ugar, S. I., Latare, A., Raza, M. B., Behera, B., Adhikary, P. P., Scopa, A., & Abdelrahman, M. A. (2023). Irrigation suitability and health risk assessment of groundwater resources in the Firozabad industrial area of north-central India: An integrated indexical, statistical, and geospatial approach. Frontiers in Environmental Science, 11, 296. (PMID: 10.3389/fenvs.2023.1116220) ; Shen, F., Mao, L., Sun, R., Du, J., Tan, Z., & Ding, M. (2019). Contamination evaluation and source identification of heavy metals in the sediments from the Lishui River Watershed, Southern China. International Journal of Environmental Research and Public Health, 16(3), 336. (PMID: 10.3390/ijerph16030336) ; Simex, S., & Helz, G. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3(6), 315–323. (PMID: 10.1007/BF02473521) ; Sodango, T. H., Li, X., Sha, J., & Bao, Z. (2018). Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. Journal of Health and Pollution, 8(17), 53–70. (PMID: 10.5696/2156-9614-8.17.53) ; Subramanian, R. P. (2008). Towards Cleaner Technologies: a process story in the Firozabad glass industry cluster. The energy and resources institute (TERI). https://bookstore.teri.res.in/docs/books/Firozabad%20glass%20industry%20cluster.pdf . Accessed 15 June 2023. ; Thomilson, D., Wilson, D., Harris, C., & Jeffrey, D. (1980). Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeresunlter, 33(1–4), 566–575. ; USEPA, S. (1986). Test methods for evaluating solid waste: physical/chemical methods. https://nepis.epa.gov/Exe/ZyPDF.cgi/50000U6E.PDF?Dockey=50000U6E.PDF (Accessed on 25 th February, 2023). ; USEPA, M. (2002). Supplemental guidance for developing soil screening levels for superfund sites. In: US Environmental protection agency washington, office of solid waste and emergency response (pp. 4–24). Washington, DC, USA. OSWER 9355. ; USEPA, M. (2005). Guidelines for carcinogen risk assessment. Paper presented at the Risk Assessment Forum US Environmental Protection Agency, Washington, DC EPA/630/P-03 F. ; Varun, M., D’Souza, R., Pratas, J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: Prospects of phytoremediation. Environmental Science and Pollution Research, 19(1), 269–281. (PMID: 10.1007/s11356-011-0530-4) ; Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. (PMID: 10.1097/00010694-193401000-00003) ; Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359. (PMID: 10.3390/ijerph17155359) ; World Bank Group. (2007). Environmental, health, and safety guidelines for glass manufacturing. https://documents1.worldbank.org/curated/en/890101490072833164/pdf/113621-WP-ENGLISH-Glass-Manufacturing-PUBLIC.pdf . Accessed 16 May 2023.
  • Contributed Indexing: Keywords: Environmental risk; Health risk assessment; Hierarchical cluster analysis; India; Potentially toxic metals; Principal component analysis
  • Substance Nomenclature: 0 (Soil) ; 0 (Metals, Heavy) ; 0 (Soil Pollutants)
  • Entry Date(s): Date Created: 20230619 Date Completed: 20230621 Latest Revision: 20230621
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -