Zum Hauptinhalt springen

Possible Involvement of Perineuronal Nets in Anti-Depressant Effects of Electroacupuncture in Chronic-Stress-Induced Depression in Rats.

Zhang, Y ; Guo, Z ; et al.
In: Neurochemical research, Jg. 48 (2023-10-01), Heft 10, S. 3146-3159
Online academicJournal

Titel:
Possible Involvement of Perineuronal Nets in Anti-Depressant Effects of Electroacupuncture in Chronic-Stress-Induced Depression in Rats.
Autor/in / Beteiligte Person: Zhang, Y ; Guo, Z ; Yang, L ; Cheng, C ; Gai, C ; Gao, Y ; Sun, H ; Hu, D
Link:
Zeitschrift: Neurochemical research, Jg. 48 (2023-10-01), Heft 10, S. 3146-3159
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press, 2023
Medientyp: academicJournal
ISSN: 1573-6903 (electronic)
DOI: 10.1007/s11064-023-03970-4
Schlagwort:
  • Rats
  • Animals
  • Neurons metabolism
  • Extracellular Matrix metabolism
  • Cerebral Cortex metabolism
  • Parvalbumins metabolism
  • Depression therapy
  • Electroacupuncture
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Neurochem Res] 2023 Oct; Vol. 48 (10), pp. 3146-3159. <i>Date of Electronic Publication: </i>2023 Jun 22.
  • MeSH Terms: Depression* / therapy ; Electroacupuncture* ; Rats ; Animals ; Neurons / metabolism ; Extracellular Matrix / metabolism ; Cerebral Cortex / metabolism ; Parvalbumins / metabolism
  • References: Khosravi M, Sotoudeh G, Amini M, Raisi F, Mansoori A, Hosseinzadeh M (2020) The relationship between dietary patterns and depression mediated by serum levels of folate and vitamin B12. BMC Psychiatry 20:63. (PMID: 32054533702054510.1186/s12888-020-2455-2) ; Bachmann S (2018) Epidemiology of suicide and the Psychiatric Perspective. Int J Environ Res Public Health 15. ; Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat reviews Disease primers 2:16065. (PMID: 2762959810.1038/nrdp.2016.65) ; Köppe G, Brückner G, Härtig W, Delpech B, Bigl V (1997) Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem J 29:11–20. (PMID: 908894110.1023/A:1026408716522) ; Lundell A, Olin AI, Mörgelin M, al-Karadaghi S, Aspberg A, Logan DT (2004) Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Struct (London England: 1993) 12:1495–1506. (PMID: 10.1016/j.str.2004.05.021) ; Alcaide J, Guirado R, Crespo C, Blasco-Ibanez JM, Varea E, Sanjuan J, Nacher J (2019) Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients. Int J bipolar disorders 7:24. (PMID: 10.1186/s40345-019-0161-0) ; Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, Zhang W, Lu L, Han Y, Shi J (2020) Decreased density of Perineuronal Net in Prelimbic cortex is linked to Depressive-Like Behavior in Young-Aged rats. Front Mol Neurosci 13:4. (PMID: 32116542702554710.3389/fnmol.2020.00004) ; Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23:1–21. (PMID: 25643025442854010.1037/a0038550) ; Smith CA, Armour M, Lee MS, Wang LQ, Hay PJ (2018) Acupuncture for depression. Cochrane Database Syst Rev 3:Cd004046. (PMID: 29502347) ; Jiang H, Zhang X, Lu J, Meng H, Sun Y, Yang X, Zhao B, Bao T (2018) Antidepressant-like Effects of acupuncture-insights from DNA methylation and histone modifications of brain-derived neurotrophic factor. Front Psychiatry 9:102. (PMID: 29636708588091010.3389/fpsyt.2018.00102) ; Qaseem A, Barry MJ, Kansagara D, Clinical Guidelines Committee of the American College of P (2016) Nonpharmacologic Versus Pharmacologic treatment of adult patients with major depressive disorder: a clinical practice Guideline from the American College of Physicians. Ann Intern Med 164:350–359. (PMID: 2685794810.7326/M15-2570) ; Yao Z, Zhang Z, Zhang J, Cai X, Zhong Z, Huang Y, Qu S (2021) Electroacupuncture alleviated the depression-like behavior by regulating FGF2 and astrocytes in the hippocampus of rats with chronic unpredictable mild stress. Brain Res Bull 169:43–50. (PMID: 3343462410.1016/j.brainresbull.2021.01.005) ; Duan D, Yang X, Ya T, Chen L (2014) Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints. Neural Regen Res 9:76–83. (PMID: 25206746414631910.4103/1673-5374.125333) ; Li W, Zhu Y, Saud SM, Guo Q, Xi S, Jia B, Jiao S, Yang X, Lu J, Song S, Tu Y (2017) Electroacupuncture relieves depression-like symptoms in rats exposed to chronic unpredictable mild stress by activating ERK signaling pathway. Neurosci Lett 642:43–50. (PMID: 2814722510.1016/j.neulet.2017.01.060) ; Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364. (PMID: 312416510.1007/BF00187257) ; Hennessy MB, Deak T, Schiml-Webb PA (2001) Stress-induced sickness behaviors: an alternative hypothesis for responses during maternal separation. Dev Psychobiol 39:76–83. (PMID: 1156887710.1002/dev.1031) ; Lu F, Zhu HM, Xie JJ, Zhou HH, Chen YL, Hu JY (2008) Effects of electroacupuncture on behavior, plasma COR and expressions of PKA and PKC in hippocampus of the depression model rat. Zhongguo Zhen Jiu [Article in Chinese] 28:214–218. (PMID: 18447224) ; Guo Y, Fang JQ (2016) Experimental acupuncture science. China Press of Traditional Chinese Medicine. ; Zhong CC, Gao YN, Huang XC, Zhu X, Miao HH, Xu XG, Qin YB (2021) Cannabinoid receptor agonist WIN55212-2 reduces unpredictable mild stress-induced depressive behavior of rats. Ann Transl Med 9:1170. (PMID: 34430611835066010.21037/atm-21-3143) ; Hu D, Yu ZL, Zhang Y, Han Y, Zhang W, Lu L, Shi J (2017) Bumetanide treatment during early development rescues maternal separation-induced susceptibility to stress. Sci Rep 7:11878. (PMID: 28928398560552810.1038/s41598-017-12183-z) ; Huang TY, Lin CH (2006) Role of amygdala MAPK activation on immobility behavior of forced swim rats. Behav Brain Res 173:104–111. (PMID: 1682817610.1016/j.bbr.2006.06.009) ; Deutch AY, Duman RS (1996) The effects of antipsychotic drugs on Fos protein expression in the prefrontal cortex: cellular localization and pharmacological characterization. Neuroscience 70:377–389. (PMID: 884814710.1016/0306-4522(95)00357-6) ; Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier. ; Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT (2021) Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 46:1969–1980. (PMID: 3416299710.1038/s41386-021-01067-6) ; Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Sci (New York NY) 329:959–964. (PMID: 10.1126/science.1190287) ; Li B, Chang LL, Xi K (2021) Neurotensin 1 receptor in the prelimbic cortex regulates anxiety-like behavior in rats. Prog Neuro-psychopharmacol Biol Psychiatry 104:110011. (PMID: 10.1016/j.pnpbp.2020.110011) ; Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, Han HB, Luo YX, Xu LZ, Wu P, Lu L (2014) Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 34:6647–6658. (PMID: 24806690660814310.1523/JNEUROSCI.5390-13.2014) ; Yu Z, Han Y, Hu D, Chen N, Zhang Z, Chen W, Xue Y, Meng S, Lu L, Zhang W, Shi J (2022) Neurocan regulates vulnerability to stress and the anti-depressant effect of ketamine in adolescent rats. Mol Psychiatry 27:2522–2532. (PMID: 3526472810.1038/s41380-022-01495-w) ; Amegandjin CA, Choudhury M, Jadhav V, Carriço JN, Quintal A, Berryer M, Snapyan M, Chattopadhyaya B, Saghatelyan A, Di Cristo G (2021) Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun 12:3653. (PMID: 34135323820910610.1038/s41467-021-23939-7) ; Strackeljan L, Baczynska E, Cangalaya C, Baidoe-Ansah D, Wlodarczyk J, Kaushik R, Dityatev A (2021) Microglia Depletion-Induced remodeling of Extracellular Matrix and Excitatory Synapses in the Hippocampus of Adult mice. Cells 10. ; Zhang W, Zhang L, Liang B, Schroeder D, Zhang ZW, Cox GA, Li Y, Lin DT (2016) Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat Neurosci 19:557–559. (PMID: 26900927481170410.1038/nn.4257) ; Crews FT, Nixon K, Wilkie ME (2004) Exercise reverses ethanol inhibition of neural stem cell proliferation. Alcohol 33:63–71. (PMID: 1535317410.1016/S0741-8329(04)00081-3) ; Lussier AL, Caruncho HJ, Kalynchuk LE (2009) Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. Neurosci Lett 460:170–174. (PMID: 1947723210.1016/j.neulet.2009.05.050) ; Nixon K, Crews FT (2004) Temporally specific burst in cell proliferation increases hippocampal neurogenesis in protracted abstinence from alcohol. J Neurosci 24:9714–9722. (PMID: 15509760673014110.1523/JNEUROSCI.3063-04.2004) ; Singh-Taylor A, Molet J, Jiang S, Korosi A, Bolton JL, Noam Y, Simeone K, Cope J, Chen Y, Mortazavi A, Baram TZ (2018) NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience. Mol Psychiatry 23:648–657. (PMID: 2807012110.1038/mp.2016.240) ; Testa D, Prochiantz A, Di Nardo AA (2019) Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 89:125–135. (PMID: 3027365310.1016/j.semcdb.2018.09.011) ; Geng J, Liu J, Yuan X, Liu W, Guo W (2019) Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol Appl Pharmacol 379:114688. (PMID: 3134016010.1016/j.taap.2019.114688) ; Zhang YX, Sun HM, Gai C, 程翠翠, 杨璐平, 郭振宇, 高誉珊 Hu D (2022) D Effects of stress of different duration on depression-like behavior and expression of CB1 and GluA1 in medial prefrontal cortex of rats. Journal of Hainan Medical University [Article in Chinese]:1–13. ; Bai L, Zhang D, Cui TT, Li JF, Gao YY, Wang NY, Jia PL, Zhang HY, Sun ZR, Zou W, Wang L (2020) Mechanisms underlying the antidepressant effect of acupuncture via the CaMK Signaling Pathway. Front Behav Neurosci 14:563698. (PMID: 33343309774654710.3389/fnbeh.2020.563698) ; Tu CH, MacDonald I, Chen YH (2019) The Effects of acupuncture on glutamatergic neurotransmission in Depression, anxiety, Schizophrenia, and Alzheimer’s Disease: a review of the literature. Front Psychiatry 10:14. (PMID: 30809158637932410.3389/fpsyt.2019.00014) ; Wen J, Chen X, Yang Y, Liu J, Li E, Liu J, Zhou Z, Wu W, He K (2021) Acupuncture medical therapy and its underlying mechanisms: a systematic review. Am J Chin Med 49:1–23. (PMID: 3337181610.1142/S0192415X21500014) ; Zhang X, Song Y, Bao T, Yu M, Xu M, Guo Y, Wang Y, Zhang C, Zhao B (2016) Antidepressant-like effects of acupuncture involved the ERK signaling pathway in rats. BMC Complement Altern Med 16:380. (PMID: 27680977504150010.1186/s12906-016-1356-x) ; Lu L, Zhang XG, Zhong LL, Chen ZX, Li Y, Zheng GQ, Bian ZX (2016) Acupuncture for neurogenesis in experimental ischemic stroke: a systematic review and meta-analysis. Sci Rep 6:19521. (PMID: 26786869472617710.1038/srep19521) ; Liu C, Zhao Y, Qin S, Wang X, Jiang Y, Wu W (2021) Randomized controlled trial of acupuncture for anxiety and depression in patients with chronic insomnia. Ann Transl Med 9:1426. (PMID: 34733978850674110.21037/atm-21-3845) ; Alboni S, van Dijk RM, Poggini S, Milior G, Perrotta M, Drenth T, Brunello N, Wolfer DP, Limatola C, Amrein I, Cirulli F, Maggi L, Branchi I (2017) Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol Psychiatry 22:552–561. (PMID: 2664563110.1038/mp.2015.142) ; Davey CG, Chanen AM, Hetrick SE, Cotton SM, Ratheesh A, Amminger GP, Koutsogiannis J, Phelan M, Mullen E, Harrison BJ, Rice S, Parker AG, Dean OM, Weller A, Kerr M, Quinn AL, Catania L, Kazantzis N, McGorry PD, Berk M (2019) The addition of fluoxetine to cognitive behavioural therapy for youth depression (YoDA-C): a randomised, double-blind, placebo-controlled, multicentre clinical trial. The lancet Psychiatry 6:735–744. (PMID: 3137121210.1016/S2215-0366(19)30215-9) ; Ma K, Zhang H, Wang S, Wang H, Wang Y, Liu J, Song X, Dong Z, Han X, Zhang Y, Li H, Rahaman A, Wang S, Baloch Z (2019) The molecular mechanism underlying GABAergic dysfunction in nucleus accumbens of depression-like behaviours in mice. J Cell Mol Med 23:7021–7028. (PMID: 31430030678745710.1111/jcmm.14596) ; Fogaca MV, Duman RS (2019) Cortical GABAergic dysfunction in stress and depression: New Insights for therapeutic interventions. Front Cell Neurosci 13:87. (PMID: 30914923642290710.3389/fncel.2019.00087) ; Yan W, Liu JF, Han Y, Zhang W, Luo YX, Xue YX, Zhu WL, Yang C, Chen WH, Guo HL, Ma YN, Yuan K, Wang JS, Shi J, Lu L (2018) Protein kinase mzeta in medial prefrontal cortex mediates depressive-like behavior and antidepressant response. Mol Psychiatry 23:1878–1891. (PMID: 2918067510.1038/mp.2017.219) ; Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P (2017) Cellular and molecular basis for stress-induced depression. Mol Psychiatry 22:1440–1447. (PMID: 2745781510.1038/mp.2016.118) ; Gerrits M, Westenbroek C, Fokkema DS, Jongsma ME, Den Boer JA, Ter Horst GJ (2003) Increased stress vulnerability after a prefrontal cortex lesion in female rats. Brain Res Bull 61:627–635. (PMID: 1451946010.1016/j.brainresbull.2003.08.004) ; Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, Caterson B, Berretta S (2015) Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Translational psychiatry 5:e496. (PMID: 25603412431282510.1038/tp.2014.128) ; Van De Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct function 214:339–353. (PMID: 10.1007/s00429-010-0247-z) ; Spijker S, Koskinen MK, Riga D (2020) Incubation of depression: ECM assembly and parvalbumin interneurons after stress. Neurosci Biobehav Rev 118:65–79. (PMID: 3268788410.1016/j.neubiorev.2020.07.015) ; Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T (2020) Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 9:102–114. (PMID: 32760846739083510.1016/j.ibror.2020.07.007) ; Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A (2020) Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. The European journal of neuroscience. ; Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA (2016) Reduced labeling of parvalbumin neurons and Perineuronal Nets in the Dorsolateral Prefrontal cortex of subjects with Schizophrenia. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41:2206–2214. (PMID: 2686805810.1038/npp.2016.24) ; Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H (2018) Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat Commun 9:4724. (PMID: 30413686622646210.1038/s41467-018-07113-0) ; Blacktop JM, Sorg BA (2019) Perineuronal nets in the lateral hypothalamus area regulate cue-induced reinstatement of cocaine-seeking behavior. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 44:850–858. (PMID: 3025811310.1038/s41386-018-0212-8) ; Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515. (PMID: 988184710.1016/S0166-2236(98)01298-3) ; Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281:17789–17800. (PMID: 1664472710.1074/jbc.M600544200) ; Reichelt AC, Hare DJ, Bussey TJ, Saksida LM (2019) Perineuronal Nets: plasticity, Protection, and therapeutic potential. Trends Neurosci 42:458–470. (PMID: 3117491610.1016/j.tins.2019.04.003) ; Steullet P, Cabungcal JH, Bukhari SA, Ardelt MI, Pantazopoulos H, Hamati F, Salt TE, Cuenod M, Do KQ, Berretta S (2018) The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry 23:2057–2065. (PMID: 2918067210.1038/mp.2017.230) ; Castillo-Gómez E, Pérez-Rando M, Bellés M, Gilabert-Juan J, Llorens JV, Carceller H, Bueno-Fernández C, García-Mompó C, Ripoll-Martínez B, Curto Y, Sebastiá-Ortega N, Moltó MD, Sanjuan J, Nacher J (2017) Early social isolation stress and perinatal NMDA receptor antagonist treatment induce changes in the structure and neurochemistry of inhibitory neurons of the adult amygdala and Prefrontal Cortex. eNeuro 4. ; Pesarico AP, Bueno-Fernandez C, Guirado R, Gómez-Climent M, Curto Y, Carceller H, Nacher J (2019) Chronic stress modulates interneuronal plasticity: Effects on PSA-NCAM and Perineuronal Nets in cortical and extracortical regions. Front Cell Neurosci 13:197. (PMID: 31133813652469510.3389/fncel.2019.00197) ; Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K (2019) Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem 148:810–821. (PMID: 30697747651607410.1111/jnc.14671) ; Ohira K, Takeuchi R, Iwanaga T, Miyakawa T (2013) Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Mol Brain 6:43. (PMID: 24228616422586010.1186/1756-6606-6-43) ; Mukhopadhyay S, Chatterjee A, Tiwari P, Ghai U, Vaidya VA (2021) Postnatal Fluoxetine Treatment Alters Perineuronal Net Formation and Maintenance in the Hippocampus. eNeuro 8. ; Donegan JJ, Lodge DJ (2017) Hippocampal Perineuronal Nets are required for the sustained antidepressant effect of ketamine. Int J Neuropsychopharmacol 20:354–358. (PMID: 27806991) ; Yu Z, Han Y, Hu D, Chen N, Zhang Z, Chen W, Xue Y, Meng S, Lu L, Zhang W, Shi J (2022) Neurocan regulates vulnerability to stress and the anti-depressant effect of ketamine in adolescent rats. Molecular psychiatry. ; Guirado R, Perez-Rando M, Sanchez-Matarredona D, Castren E, Nacher J (2014) Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons. Int J Neuropsychopharmacol 17:1635–1646. (PMID: 2478675210.1017/S1461145714000406) ; Shi W, Wei X, Wang X, Du S, Liu W, Song J, Wang Y (2019) Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci USA 116:27063–27073. (PMID: 31843906693650210.1073/pnas.1902680116) ; Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20:451–465. (PMID: 3126325210.1038/s41583-019-0196-3) ; Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, Gondré-Lewis MC, Weinberger DR, Kleinman JE, Hyde TM (2018) GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry 23:1496–1505. (PMID: 2848540310.1038/mp.2017.105) ; Kilonzo VW, Sweet RA, Glausier JR, Pitts MW (2020) Deficits in glutamic acid decarboxylase 67 immunoreactivity, parvalbumin interneurons, and Perineuronal Nets in the Inferior Colliculus of subjects with Schizophrenia. Schizophr Bull 46:1053–1059. (PMID: 32681171750518010.1093/schbul/sbaa082) ; Wen TH, Binder DK, Ethell IM, Razak KA (2018) The Perineuronal ‘safety’ net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 11:270. (PMID: 30123106608542410.3389/fnmol.2018.00270) ; Xin JJ, Dai QF, Lu FY, Zhao YX, Liu Q, Cui JJ, Xu DS, Bai WZ, Jing XH, Gao JH, Yu XC (2020) Antihypertensive and Antifibrosis Effects of acupuncture at PC6 acupoints in spontaneously hypertensive rats and the underlying mechanisms. Front Physiol 11:734. (PMID: 32982761748026210.3389/fphys.2020.00734) ; Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M (2017) Removal of Perineuronal Nets unlocks juvenile plasticity through Network Mechanisms of decreased inhibition and increased Gamma Activity. J Neurosci 37:1269–1283. (PMID: 28039374659686310.1523/JNEUROSCI.2504-16.2016) ; Khoo GH, Lin YT, Tsai TC, Hsu KS (2019) Perineuronal Nets restrict the induction of Long-Term Depression in the mouse hippocampal CA1 region. Mol Neurobiol 56:6436–6450. (PMID: 3082696710.1007/s12035-019-1526-1) ; Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12:897–904. (PMID: 1948368610.1038/nn.2338) ; Hirono M, Watanabe S, Karube F, Fujiyama F, Kawahara S, Nagao S, Yanagawa Y, Misonou H (2018) Perineuronal Nets in the deep cerebellar nuclei regulate GABAergic Transmission and Delay Eyeblink Conditioning. J Neurosci 38:6130–6144. (PMID: 29858484659615710.1523/JNEUROSCI.3238-17.2018) ; Zhang J, Abdullah JM (2013) The role of GluA1 in central nervous system disorders. Rev Neurosci 24:499–505. (PMID: 2407761610.1515/revneuro-2013-0021) ; Harkness JH, Gonzalez AE, Bushana PN, Jorgensen ET, Hegarty DM, Di Nardo AA, Prochiantz A, Wisor JP, Aicher SA, Brown TE, Sorg BA (2021) Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Struct Funct 226:1135–1153. (PMID: 33585984808699810.1007/s00429-021-02229-4) ; Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sánchez-Aguilera A, Mantoan L, Maeso P, Fernandes C, Ewers H, Rico B (2017) Activity-dependent gating of parvalbumin interneuron function by the Perineuronal net protein Brevican. Neuron 95:639–655e610. (PMID: 2871265410.1016/j.neuron.2017.06.028) ; Wang Y, Wang Y, Liu J, Wang X (2018) Electroacupuncture alleviates motor symptoms and Up-Regulates vesicular glutamatergic transporter 1 expression in the Subthalamic Nucleus in a unilateral 6-Hydroxydopamine-lesioned hemi-parkinsonian rat model. Neurosci Bull 34:476–484. (PMID: 29508251596044910.1007/s12264-018-0213-y) ; Coley AA, Gao WJ (2019) PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 9:9486. (PMID: 31263190660294810.1038/s41598-019-45971-w) ; Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245. (PMID: 1595288710.1146/annurev.biochem.74.082803.133339)
  • Grant Information: 81803857 National Natural Science Foundation of China
  • Contributed Indexing: Keywords: Baihui; Depression; Electroacupuncture; PNNs; Yintang
  • Substance Nomenclature: 0 (Parvalbumins)
  • Entry Date(s): Date Created: 20230622 Date Completed: 20230901 Latest Revision: 20230901
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -