Zum Hauptinhalt springen

Prediction of gestational diabetes mellitus at the first trimester: machine-learning algorithms.

Li, YX ; Liu, YC ; et al.
In: Archives of gynecology and obstetrics, Jg. 309 (2024-06-01), Heft 6, S. 2557-2566
Online academicJournal

Titel:
Prediction of gestational diabetes mellitus at the first trimester: machine-learning algorithms.
Autor/in / Beteiligte Person: Li, YX ; Liu, YC ; Wang, M ; Huang, YL
Link:
Zeitschrift: Archives of gynecology and obstetrics, Jg. 309 (2024-06-01), Heft 6, S. 2557-2566
Veröffentlichung: Berlin : Springer Verlag ; <i>Original Publication</i>: München : Springer International, c1987-, 2024
Medientyp: academicJournal
ISSN: 1432-0711 (electronic)
DOI: 10.1007/s00404-023-07131-4
Schlagwort:
  • Humans
  • Female
  • Pregnancy
  • Adult
  • China epidemiology
  • Body Mass Index
  • Risk Assessment methods
  • Logistic Models
  • ROC Curve
  • Cohort Studies
  • Glycated Hemoglobin analysis
  • Diabetes, Gestational diagnosis
  • Diabetes, Gestational epidemiology
  • Pregnancy Trimester, First
  • Machine Learning
  • Algorithms
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Arch Gynecol Obstet] 2024 Jun; Vol. 309 (6), pp. 2557-2566. <i>Date of Electronic Publication: </i>2023 Jul 21.
  • MeSH Terms: Diabetes, Gestational* / diagnosis ; Diabetes, Gestational* / epidemiology ; Pregnancy Trimester, First* ; Machine Learning* ; Algorithms* ; Humans ; Female ; Pregnancy ; Adult ; China / epidemiology ; Body Mass Index ; Risk Assessment / methods ; Logistic Models ; ROC Curve ; Cohort Studies ; Glycated Hemoglobin / analysis
  • References: Chiefari E et al (2017) Gestational diabetes mellitus: an updated overview. J Endocrinol Invest 40(9):899–909. (PMID: 10.1007/s40618-016-0607-528283913) ; Juan J, Yang H (2020) Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int J Environ Res Public Health 17(24):9517. (PMID: 10.3390/ijerph17249517333531367766930) ; Hod M et al (2015) The international federation of gynecology and obstetrics (FIGO) initiative on gestational diabetes mellitus: a pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet 131(Suppl 3):S173-211. (PMID: 10.1016/S0020-7292(15)30007-226433807) ; Johns EC et al (2018) Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab 29(11):743–754. (PMID: 10.1016/j.tem.2018.09.00430297319) ; Wang C et al (2017) A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol 216(4):340–351. (PMID: 10.1016/j.ajog.2017.01.03728161306) ; Schaefer KK et al (2018) Prediction of gestational diabetes mellitus in the born in Guangzhou cohort study. China Int J Gynaecol Obstet 143(2):164–171. (PMID: 10.1002/ijgo.1262730030928) ; Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219. (PMID: 10.1056/NEJMp1606181276820335070532) ; Uddin S et al (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19(1):281. (PMID: 10.1186/s12911-019-1004-8318643466925840) ; Li YX et al (2021) Novelelectronic health records applied for prediction of pre-eclampsia: machine-learning algorithms. Pregnancy Hypertens 26:102–109. (PMID: 10.1016/j.preghy.2021.10.00634739939) ; Tsur A et al (2020) Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound Obstet Gynecol 56(4):588–596. (PMID: 10.1002/uog.2187831587401) ; Xiong Y et al (2022) Prediction of gestational diabetes mellitus in the first 19 weeks of pregnancy using machine learning techniques. J Matern Fetal Neonatal Med 35(13):2457–2463. (PMID: 10.1080/14767058.2020.178651732762275) ; Wu YT et al (2021) Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning. J Clin Endocrinol Metab 106(3):e1191–e1205. (PMID: 10.1210/clinem/dgaa89933351102) ; Kumar M et al (2022) Population-centric risk prediction modeling for gestational diabetes mellitus: a machine learning approach. Diabetes Res Clin Pract 185:109237. (PMID: 10.1016/j.diabres.2022.109237351240967612635) ; Debnath T, Nakamoto T (2020) Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures. PLoS ONE 15(6):e0234688. (PMID: 10.1371/journal.pone.0234688325592557304616) ; Meng D, Xu J, Zhao J (2021) Analysis and prediction of hand, foot and mouth disease incidence in China using random forest and XGBoost. PLoS ONE 16(12):e0261629. (PMID: 10.1371/journal.pone.0261629349366888694472) ; Hong W et al (2022) A comparison of XGBoost, random forest, and nomograph for the prediction of disease severity in patients with COVID-19 pneumonia: implications of cytokine and immune cell profile. Front Cell Infect Microbiol 12:819267. (PMID: 10.3389/fcimb.2022.819267354937299039730) ; Hong N et al (2022) State of the art of machine learning-enabled clinical decision support in intensive care units: literature review. JMIR Med Inform 10(3):e28781. (PMID: 10.2196/28781352387908931648) ; Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20(5):e262–e273. (PMID: 10.1016/S1470-2045(19)30149-431044724) ; Naqa IE et al (2018) Prospects and challenges for clinical decision support in the era of big data. JCO Clin Cancer Inform. https://doi.org/10.1016/S1470-2045(19)30149-4. (PMID: 10.1016/S1470-2045(19)30149-4306138236317743) ; Li YX et al (2023) Convolutional neural networks for classifying cervical cancer types using histological images. J Digit Imaging 36(2):441–449. (PMID: 10.1007/s10278-022-00722-836474087) ; Yue S et al (2022) Machine learning for the prediction of acute kidney injury in patients with sepsis. J Transl Med 20(1):215. (PMID: 10.1186/s12967-022-03364-0355628039101823) ; van der Ploeg T, Austin PC, Steyerberg EW (2014) Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 14:137. (PMID: 10.1186/1471-2288-14-137255328204289553) ; Sletner L et al (2017) Fetal growth trajectories in pregnancies of European and South Asian mothers with and without gestational diabetes, a population-based cohort study. PLoS ONE 12(3):e0172946. (PMID: 10.1371/journal.pone.0172946282533665333847) ; Koivusalo SB et al (2016) Gestational diabetes mellitus can be prevented by lifestyle intervention: the finnish gestational diabetes prevention study (RADIEL): a randomized controlled trial. Diabetes Care 39(1):24–30. (PMID: 10.2337/dc15-051126223239) ; Emmanuel T et al (2021) A survey on missing data in machine learning. J Big Data 8(1):140. (PMID: 10.1186/s40537-021-00516-9347221138549433)
  • Contributed Indexing: Keywords: Artificial intelligence; Early pregnancy; Electronic health records; Gestational diabetes mellitus; Machine learning
  • Substance Nomenclature: 0 (Glycated Hemoglobin)
  • Entry Date(s): Date Created: 20230721 Date Completed: 20240603 Latest Revision: 20240624
  • Update Code: 20240625

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -