Zum Hauptinhalt springen

The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices.

Studley, WR ; Lamanna, E ; et al.
In: British journal of pharmacology, Jg. 181 (2024-07-01), Heft 14, S. 2287-2301
Online academicJournal

Titel:
The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices.
Autor/in / Beteiligte Person: Studley, WR ; Lamanna, E ; Martin, KA ; Nold-Petry, CA ; Royce, SG ; Woodman, OL ; Ritchie, RH ; Qin, CX ; Bourke, JE
Link:
Zeitschrift: British journal of pharmacology, Jg. 181 (2024-07-01), Heft 14, S. 2287-2301
Veröffentlichung: London : Wiley ; <i>Original Publication</i>: London, Macmillian Journals Ltd., 2024
Medientyp: academicJournal
ISSN: 1476-5381 (electronic)
DOI: 10.1111/bph.16231
Schlagwort:
  • Animals
  • Male
  • Mice
  • Female
  • Dose-Response Relationship, Drug
  • Vasodilation drug effects
  • Receptors, Formyl Peptide agonists
  • Receptors, Formyl Peptide antagonists & inhibitors
  • Receptors, Formyl Peptide metabolism
  • Mice, Inbred C57BL
  • Vasodilator Agents pharmacology
  • Lung drug effects
  • Lung metabolism
  • Anti-Inflammatory Agents pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Br J Pharmacol] 2024 Jul; Vol. 181 (14), pp. 2287-2301. <i>Date of Electronic Publication: </i>2023 Sep 26.
  • MeSH Terms: Receptors, Formyl Peptide* / agonists ; Receptors, Formyl Peptide* / antagonists & inhibitors ; Receptors, Formyl Peptide* / metabolism ; Mice, Inbred C57BL* ; Vasodilator Agents* / pharmacology ; Lung* / drug effects ; Lung* / metabolism ; Anti-Inflammatory Agents* / pharmacology ; Animals ; Male ; Mice ; Female ; Dose-Response Relationship, Drug ; Vasodilation / drug effects
  • References: Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. https://doi.org/10.1111/bph.15538. ; Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112. ; Benza, R. L., Miller, D. P., Barst, R. J., Badesch, D. B., Frost, A. E., & McGoon, M. D. (2012). An evaluation of long‐term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest, 142(2), 448–456. https://doi.org/10.1378/chest.11-1460. ; Calvello, R., Cianciulli, A., Porro, C., Moda, P., De Nuccio, F., Nicolardi, G., Giannotti, L., Panaro, M. A., & Lofrumento, D. D. (2021). Formyl peptide receptor (FPR)1 modulation by resveratrol in an LPS‐induced neuroinflammatory animal model. Nutrients, 13, 1418. https://doi.org/10.3390/nu13051418. ; Chamorro, V., Morales‐Cano, D., Milara, J., Barreira, B., Moreno, L., Callejo, M., Mondejar‐Parreño, G., Esquivel‐Ruiz, S., Cortijo, J., Cogolludo, Á., Barberá, J. A., & Perez‐Vizcaino, F. (2018). Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventilation/perfusion matching. PLoS ONE, 13(1), e0191239. https://doi.org/10.1371/journal.pone.0191239. ; Cilibrizzi, A., Quinn, M. T., Kirpotina, L. N., Schepetkin, I. A., Holderness, J., Ye, R. D., Rabiet, M. J., Biancalani, C., Cesari, N., Graziano, A., Vergelli, C., Pieretti, S., Dal Piaz, V., & Giovannoni, M. P. (2009). 6‐Methyl‐2,4‐disubstituted pyridazin‐3(2H)‐ones: A novel class of small‐molecule agonists for formyl peptide receptors. Journal of Medicinal Chemistry, 52(16), 5044–5057. https://doi.org/10.1021/jm900592h. ; Correale, M., Ferraretti, A., Monaco, I., Grazioli, D., Di Biase, M., & Brunetti, N. D. (2018). Endothelin‐receptor antagonists in the management of pulmonary arterial hypertension: Where do we stand? Vascular Health and Risk Management, 14, 253–264. https://doi.org/10.2147/VHRM.S133921. ; Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987–993. https://doi.org/10.1111/bph.14153. ; Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179, 3907–3913. https://doi.org/10.1111/bph.15868. ; Deora, G. S., Qin, C. X., Vecchio, E. A., Debono, A. J., Priebbenow, D. L., Brady, R. M., Beveridge, J., Teguh, S. C., Deo, M., May, L. T., Krippner, G., Ritchie, R. H., & Baell, J. B. (2019). Substituted pyridazin‐3(2H)‐ones as highly potent and biased formyl peptide receptor agonists. Journal of Medicinal Chemistry, 62(10), 5242–5248. https://doi.org/10.1021/acs.jmedchem.8b01912. ; El‐Awady, M. S. H., Smirnov, S. V., & Watson, M. L. (2008). Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta. British Journal of Pharmacology, 155(8)1164–1173. https://doi.org/10.1038/bjp.2008.358. ; Filep, J. G., Sekheri, M., & El Kebir, D. (2018). Targeting formyl peptide receptors to facilitate the resolution of inflammation. European Journal of Pharmacology, 833, 339–348. https://doi.org/10.1016/j.ejphar.2018.06.025. ; Foudi, N., Ozen, G., Amgoud, Y., Louedec, L., Choqueux, C., Badi, A., Kotelevets, L., Chastre, E., Longrois, D., & Norel, X. (2017). Decreased vasorelaxation induced by iloprost during acute inflammation in human internal mammary artery. European Journal of Pharmacology, 804, 31–37. https://doi.org/10.1016/j.ejphar.2017.03.060. ; Groth, A., Vrugt, B., Brock, M., Speich, R., Ulrich, S., & Huber, L. C. (2014). Inflammatory cytokines in pulmonary hypertension. Respiratory Research, 15, 47. https://doi.org/10.1186/1465-9921-15-47. ; Hanthazi, A., Jespers, P., Vegh, G., Degroot, G. N., Springael, J. Y., Lybaert, P., Dewachter, L., & Mc Entee, K. (2019). Chemerin influences endothelin‐ and serotonin‐induced pulmonary artery vasoconstriction in rats. Life Sciences, 231, 116580. https://doi.org/10.1016/j.lfs.2019.116580. ; Hensley, M. K., Levine, A., Gladwin, M. T., & Lai, Y.‐C. (2018). Emerging therapeutics in pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 314(5), L769–L781. https://doi.org/10.1152/ajplung.00259.2017. ; Hiram, R., Rizcallah, E., Marouan, S., Sirois, C., Sirois, M., Morin, C., Fortin, S., & Rousseau, E. (2015). Resolvin E1 normalizes contractility, Ca2+ sensitivity and smooth muscle cell migration rate in TNF‐α‐ and IL‐6‐pretreated human pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(8), L776–L788. https://doi.org/10.1152/ajplung.00177.2015. ; Hu, L., Zhao, C., Chen, Z., Hu, G., Li, X., & Li, Q. (2022). An emerging strategy for targeted therapy of pulmonary arterial hypertension: Vasodilation plus vascular remodeling inhibition. Drug Discovery Today, 27(5), 1457–1463. https://doi.org/10.1016/j.drudis.2022.01.011. ; Humbert, M., Kovacs, G., Hoeper, M. M., Badagliacca, R., Berger, R. M. F., Brida, M., Carlsen, J., Coats, A. J. S., Escribano‐Subias, P., Ferrari, P., Ferreira, D. S., Ghofrani, H. A., Giannakoulas, G., Kiely, D. G., Mayer, E., Meszaros, G., Nagavci, B., Olsson, K. M., Pepke‐Zaba, J., … the ESC/ERS Scientific Document Group. (2023). 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. The European Respiratory Journal, 61, 2200879. https://doi.org/10.1183/13993003.00879-2022. ; Humbert, M., Sitbon, O., Yaici, A., Montani, D., O'Callaghan, D. S., Jais, X., Parent, F., Savale, L., Natali, D., Gunther, S., Chaouat, A., Chabot, F., Cordier, J. F., Habib, G., Gressin, V., Jing, Z. C., Souza, R., Simonneau, G., & on behalf of the French Pulmonary Arterial Hypertension Network. (2010). Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. The European Respiratory Journal, 36(3), 549–555. https://doi.org/10.1183/09031936.00057010. ; Itoh, T., Nagaya, N., Ishibashi‐Ueda, H., Kyotani, S., Oya, H., Sakamaki, F., Kimura, H., & Nakanishi, N. (2006). Increased plasma monocyte chemoattractant protein‐1 level in idiopathic pulmonary arterial hypertension. Respirology, 11(2), 158–163. https://doi.org/10.1111/j.1440-1843.2006.00821.x. ; Jain, P. P., Leitinger, G., Leber, R., Nagaraj, C., Lehofer, B., Olschewski, H., Olschewski, A., Prassl, R., & Marsh, L. (2014). Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. International Journal of Nanomedicine, 9, 3249–3261. https://doi.org/10.2147/IJN.S63190. ; Kozlowska, H., Baranowska‐Kuczko, M., Schlicker, E., Kozlowski, M., Kloza, M., & Malinowska, B. (2013). Relaxation of human pulmonary arteries by PPARγ agonists. Naunyn‐Schmiedeberg's Archives of Pharmacology, 386(5), 445–453. https://doi.org/10.1007/s00210-013-0846-3. ; Kumar, A., & Neema, P. K. (2017). Severe pulmonary hypertension and right ventricular failure. Indian Journal of Anaesthesia, 61(9), 753–759. https://doi.org/10.4103/ija.IJA_420_17. ; Lam, M., Royce, S. G., Donovan, C., Jelinic, M., Parry, L. J., Samuel, C. S., & Bourke, J. E. (2016). Serelaxin elicits bronchodilation and enhances β‐adrenoceptor‐mediated airway relaxation. Frontiers in Pharmacology, 7, 406. https://doi.org/10.3389/fphar.2016.00406. ; Li, A., Varney, M. L., Valasek, J., Godfrey, M., Dave, B. J., & Singh, R. K. (2005). Autocrine role of interleukin‐8 in induction of endothelial cell proliferation, survival, migration and MMP‐2 production and angiogenesis. Angiogenesis, 8(1), 63–71. https://doi.org/10.1007/s10456-005-5208-4. ; Li, Y., Connolly, M., Nagaraj, C., Tang, B., Bálint, Z., Popper, H., Smolle‐Juettner, F. M., Lindenmann, J., Kwapiszewska, G., Aaronson, P. I., Wohlkoenig, C., Leithner, K., Olschewski, H., & Olschewski, A. (2012). Peroxisome proliferator‐activated receptor‐β/δ, the acute signaling factor in prostacyclin‐induced pulmonary vasodilation. American Journal of Respiratory Cell and Molecular Biology, 46(3), 372–379. https://doi.org/10.1165/rcmb.2010-0428OC. ; Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611–3616. https://doi.org/10.1111/bph.15178. ; Liu, G., Betts, C., Cunoosamy, D. M., Aberg, P. M., Hornberg, J. J., Sivars, K. B., & Cohen, T. S. (2019). Use of precision cut lung slices as a translational model for the study of lung biology. Respiratory Research, 20(1), 162. https://doi.org/10.1186/s12931-019-1131-x. ; Manoury, B., Lamalle, C., Oliveira, R., Reid, J., & Gurney, A. M. (2011). Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK‐1 knockout mice. The Journal of Physiology, 589(13), 3231–3246. https://doi.org/10.1113/jphysiol.2011.206748. ; Marshall, S. A., Qin, C. X., Jelinic, M., O'Sullivan, K., Deo, M., Walsh, J., Li, M., Parry, L. J., Ritchie, R. H., & Leo, C. H. (2020). The novel small‐molecule annexin‐A1 mimetic, compound 17b, elicits vasoprotective actions in streptozotocin‐induced diabetic mice. International Journal of Molecular Sciences, 21, 1384. https://doi.org/10.3390/ijms21041384. ; Martin, C., Held, H. D., & Uhlig, S. (2000). Differential effects of the mixed ETA/ETB‐receptor antagonist bosentan on endothelin‐induced bronchoconstriction, vasoconstriction and prostacyclin release. Naunyn‐Schmiedeberg's Archives of Pharmacology, 362(2), 128–136. https://doi.org/10.1007/s002100000264. ; Mondéjar‐Parreño, G., Moral‐Sanz, J., Barreira, B., De la Cruz, A., Gonzalez, T., Callejo, M., Esquivel‐Ruiz, S., Morales‐Cano, D., Moreno, L., Valenzuela, C., Perez‐Vizcaino, F., & Cogolludo, A. (2019). Activation of Kv7 channels as a novel mechanism for NO/cGMP‐induced pulmonary vasodilation. British Journal of Pharmacology, 176(13), 2131–2145. https://doi.org/10.1111/bph.14662. ; Neumann, P., Gertzberg, N., & Johnson, A. (2004). TNF‐α induces a decrease in eNOS promoter activity. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(2), L452–L459. https://doi.org/10.1152/ajplung.00378.2002. ; Park, S. H., Choi, H.‐J., Lee, S. Y., & Han, J.‐S. (2015). TLR4‐mediated IRAK1 activation induces TNF‐α expression via JNK‐dependent NF‐κB activation in human bronchial epithelial cells. European Journal of Inflammation, 13(3), 183–195. https://doi.org/10.1177/1721727x15619185. ; Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410. ; Perez, J. F., & Sanderson, M. J. (2005). The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5‐HT and KCl. The Journal of General Physiology, 125(6), 555–567. https://doi.org/10.1085/jgp.200409217. ; Qin, C., Buxton, K. D., Pepe, S., Cao, A. H., Venardos, K., Love, J. E., Kaye, D. M., Yang, Y. H., Morand, E. F., & Ritchie, R. H. (2013). Reperfusion‐induced myocardial dysfunction is prevented by endogenous annexin‐A1 and its N‐terminal‐derived peptide Ac‐ANX‐A1(2‐26). British Journal of Pharmacology, 168(1), 238–252. https://doi.org/10.1111/j.1476-5381.2012.02176.x. ; Qin, C., Yang, Y. H., May, L., Gao, X., Stewart, A. G., Tu, Y., Woodman, O. L., & Ritchie, R. H. (2015). Cardioprotective potential of annexin‐A1 mimetics in myocardial infarction. Pharmacology & Therapeutics, 148, 47–65. https://doi.org/10.1016/j.pharmthera.2014.11.012. ; Qin, C. X., May, L. T., Li, R., Cao, N., Rosli, S., Deo, M., Alexander, A. E., Horlock, D., Bourke, J. E., Yang, Y. H., Stewart, A. G., Kaye, D. M., du, X. J., Sexton, P. M., Christopoulos, A., Gao, X. M., & Ritchie, R. H. (2017). Small‐molecule‐biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia‐reperfusion injury in mice. Nature Communications, 8, 14232. https://doi.org/10.1038/ncomms14232. ; Qin, C. X., Norling, L. V., Vecchio, E. A., Brennan, E. P., May, L. T., Wootten, D., Godson, C., Perretti, M., & Ritchie, R. H. (2022). Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. British Journal of Pharmacology, 179, 4617–4639. https://doi.org/10.1111/bph.15919. ; Selimovic, N., Bergh, C. H., Andersson, B., Sakiniene, E., Carlsten, H., & Rundqvist, B. (2009). Growth factors and interleukin‐6 across the lung circulation in pulmonary hypertension. The European Respiratory Journal, 34(3), 662–668. https://doi.org/10.1183/09031936.00174908. ; Seo, J. K., Choi, S. Y., Kim, Y., Baek, S. H., Kim, K. T., Chae, C. B., Lambeth, J. D., Suh, P. G., & Ryu, S. H. (1997). A peptide with unique receptor specificity: Stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. Journal of Immunology, 158(4), 1895–1901. https://doi.org/10.4049/jimmunol.158.4.1895. ; Shao, G., Julian, M. W., Bao, S., McCullers, M. K., Lai, J. P., Knoell, D. L., & Crouser, E. D. (2011). Formyl peptide receptor ligands promote wound closure in lung epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 44(3), 264–269. https://doi.org/10.1165/rcmb.2010-0246RC. ; Shu, T., Zhang, J., Zhou, Y., Chen, Z., Li, J., Tang, Q., Lei, W., Xing, Y., Wang, J., & Wang, C. (2023). Eosinophils protect against pulmonary hypertension through 14‐HDHA and 17‐HDHA. The European Respiratory Journal, 61, 2200582. https://doi.org/10.1183/13993003.00582-2022. ; Steiner, M. K., Syrkina, O. L., Kolliputi, N., Mark, E. J., Hales, C. A., & Waxman, A. B. (2009). Interleukin‐6 overexpression induces pulmonary hypertension. Circulation Research, 104(2), 236–244. https://doi.org/10.1161/CIRCRESAHA.108.182014. ; Stenfeldt, A. L., Karlsson, J., Wenneras, C., Bylund, J., Fu, H., & Dahlgren, C. (2007). Cyclosporin H, Boc‐MLF and Boc‐FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation, 30(6), 224–229. https://doi.org/10.1007/s10753-007-9040-4. ; Strange, G., Lau, E. M., Giannoulatou, E., Corrigan, C., Kotlyar, E., Kermeen, F., Williams, T., Celermajer, D. S., Dwyer, N., Whitford, H., Wrobel, J. P., Feenstra, J., Lavender, M., Whyte, K., Collins, N., Steele, P., Proudman, S., Thakkar, V., Keating, D., … PHSANZ Registry. (2018). Survival of idiopathic pulmonary arterial hypertension patients in the modern era in Australia and New Zealand. Heart, Lung & Circulation, 27(11), 1368–1375. https://doi.org/10.1016/j.hlc.2017.08.018. ; Toxvig, A. K., Wehland, M., Grimm, D., Infanger, M., & Kruger, M. (2019). A focus on riociguat in the treatment of pulmonary arterial hypertension. Basic & Clinical Pharmacology & Toxicology, 125(3), 202–214. https://doi.org/10.1111/bcpt.13272. ; Tuder, R. M., Cool, C. D., Geraci, M. W., Wang, J., Abman, S. H., Wright, L., Badesch, D., & Voelkel, N. F. (1999). Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 159(6), 1925–1932. https://doi.org/10.1164/ajrccm.159.6.9804054. ; Williams, L. T., Snyderman, R., Pike, M. C., & Lefkowitz, R. J. (1977). Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 74(3), 1204–1208. https://doi.org/10.1073/pnas.74.3.1204. ; Wright, J. L., & Churg, A. (2008). Short‐term exposure to cigarette smoke induces endothelial dysfunction in small intrapulmonary arteries: Analysis using guinea pig precision cut lung slices. Journal of Applied Physiology (Bethesda, MD: 1985), 104(5), 1462–1469. https://doi.org/10.1152/japplphysiol.00520.2007. ; Zhang, S., Gong, H., Ge, Y., & Ye, R. D. (2020). Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro‐ and anti‐inflammatory signaling. Pharmacological Research, 161, 105117. https://doi.org/10.1016/j.phrs.2020.105117. ; Zheng, W., Wang, Z., Jiang, X., Zhao, Q., & Shen, J. (2020). Targeted drugs for treatment of pulmonary arterial hypertension: Past, present, and future perspectives. Journal of Medicinal Chemistry, 63, 15153–15186. https://doi.org/10.1021/acs.jmedchem.0c01093.
  • Grant Information: ID1187989 National Health and Medical Research Council; Victorian Government of Australia's Operational Infrastructure Support Program; National Heart Foundation of Australia Future Leader Fellowship; Australian Government Research Training Program (RTP) Scholarship
  • Contributed Indexing: Keywords: formyl peptide receptor; inflammation; precision‐cut lung slice; pulmonary arterial hypertension; respiratory pharmacology; vasodilation
  • Substance Nomenclature: 0 (Receptors, Formyl Peptide) ; 0 (Vasodilator Agents) ; 0 (Anti-Inflammatory Agents)
  • Entry Date(s): Date Created: 20230902 Date Completed: 20240619 Latest Revision: 20240625
  • Update Code: 20240626

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -