Zum Hauptinhalt springen

Intuitionistic fuzzy-based entropy weight method-TOPSIS for multi-attribute group decision-making in drilling fluid waste treatment technology selection.

Wu, W ; Xie, C ; et al.
In: Environmental monitoring and assessment, Jg. 195 (2023-09-05), Heft 10, S. 1146
Online academicJournal

Titel:
Intuitionistic fuzzy-based entropy weight method-TOPSIS for multi-attribute group decision-making in drilling fluid waste treatment technology selection.
Autor/in / Beteiligte Person: Wu, W ; Xie, C ; Geng, S ; Lu, H ; Yao, J
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 195 (2023-09-05), Heft 10, S. 1146
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2023
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-023-11724-6
Schlagwort:
  • Entropy
  • Environmental Pollution
  • Technology
  • Environmental Monitoring
  • Decision Making
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2023 Sep 05; Vol. 195 (10), pp. 1146. <i>Date of Electronic Publication: </i>2023 Sep 05.
  • MeSH Terms: Environmental Monitoring* ; Decision Making* ; Entropy ; Environmental Pollution ; Technology
  • References: Adhami, S., Jamshidi-Zanjani, A., & Darban, A. K. (2021). Remediation of oil-based drilling waste using the electrokinetic-Fenton method. Process Safety and Environmental Protection, 149, 432–441. https://doi.org/10.1016/j.psep.2020.11.018. (PMID: 10.1016/j.psep.2020.11.018) ; Agarry, S. E., & Ogunleye, O. O. (2012). Factorial designs application to study enhanced bioremediation of soil artificially contaminated with weathered Bonny Light crude oil through biostimulation and bioaugmentation strategy. Journal of Environmental Protection, 03(08), 748–759. https://doi.org/10.4236/jep.2012.38089. (PMID: 10.4236/jep.2012.38089) ; Al Zarkani, H. M., Mezher, T., & El-Fadel, M. (2023). Life cycle assessment in the petroleum industry: A systematic framework towards improved environmental performance. Journal of Cleaner Production, 137196. https://doi.org/10.1016/j.jclepro.2023.137196. ; Alves, G. M., & Petri, I. (2021). Microwave remediation of oil-contaminated drill cuttings-A review. Journal of Petroleum Science and Engineering, 207. https://doi.org/10.1016/j.petrol.2021.109137. ; An, D., Xi, B., Ren, J., Ren, X., Zhang, W., Wang, Y., & Dong, L. (2018). Multi-criteria sustainability assessment of urban sludge treatment technologies: Method and case study. Resources, Conservation and Recycling, 128, 546–554. https://doi.org/10.1016/j.resconrec.2016.08.018. (PMID: 10.1016/j.resconrec.2016.08.018) ; Araka, P. P., Okparanma, R. N., & Ayotamuno, J. M. (2019). Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings. Heliyon, 5(10), e02644. https://doi.org/10.1016/j.heliyon.2019.e02644. (PMID: 10.1016/j.heliyon.2019.e02644) ; Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1). ; Attri, S. D., Singh, S., Dhar, A., & Powar, S. (2022). Multi-attribute sustainability assessment of wastewater treatment technologies using combined fuzzy multi-criteria decision-making techniques. Journal of Cleaner Production, 357. https://doi.org/10.1016/j.jclepro.2022.131849. ; Bonab, S. R., Yousefi, S., Tosarkani, B. M., & Ghoushchi, S. J. (2023). A decision-making framework for blockchain platform evaluation in spherical fuzzy environment. Expert Systems with Applications, 120833. https://doi.org/10.1016/j.eswa.2023.120833. ; Boran, F. E., Genc, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363–11368. https://doi.org/10.1016/j.eswa.2009.03.039. (PMID: 10.1016/j.eswa.2009.03.039) ; Chen, L., Huang, M., Jiang, X., Li, H., Chen, Q., Zhang, M., & Li, S. (2015). Pilot tests of microbe-soil combined treatment of waste drilling sludge. Natural Gas Industry B, 2(2-3), 270–276. https://doi.org/10.1016/j.ngib.2015.07.021. (PMID: 10.1016/j.ngib.2015.07.021) ; Deepa, J., & Sanjay, K. (2014). Intuitionistic fuzzy entropy and distance measure based TOPSIS method for multi-criteria decision making. Egyptian Informatics Journal, 15(2), 97–104. https://doi.org/10.1016/j.eij.2014.03.002. (PMID: 10.1016/j.eij.2014.03.002) ; Dehshiri, S. J. H., Amiri, M., Olfat, L., & Pishvaee, M. S. (2023). A robust fuzzy stochastic multi-objective model for stone paper closed-loop supply chain design considering the flexibility of soft constraints based on Me measure. Applied Soft Computing, 134, 109944. https://doi.org/10.1016/j.asoc.2022.109944. (PMID: 10.1016/j.asoc.2022.109944) ; Dehshiri, S. J. H., Emamat, M. S. M. M., & Amiri, M. (2022). A novel group BWM approach to evaluate the implementation criteria of blockchain technology in the automotive industry supply chain. Expert Systems with Applications, 198, 116826. https://doi.org/10.1016/j.eswa.2022.116826. (PMID: 10.1016/j.eswa.2022.116826) ; Drzewicz, P., Nałęcz-Jawecki, G., Zgadzaj, A., Smoliński, A., Krzan, M., & Starzycka, A. (2019). Toxicological evaluation of thermal treatment of drilling waste from shale gas exploration in Poland. Ecological Chemistry and Engineering S, 26(1), 45–57. https://doi.org/10.1515/eces-2019-0004. (PMID: 10.1515/eces-2019-0004) ; Dursun, M., Karsak, E. E., & Karadayi, M. A. (2011). Assessment of health-care waste treatment alternatives using fuzzy multi-criteria decision making approaches. Resources, Conservation and Recycling, 57, 98–107. https://doi.org/10.1016/j.resconrec.2011.09.012. (PMID: 10.1016/j.resconrec.2011.09.012) ; Fan, Y. Y., Wang, G. C., Fu, J. H., & Zheng, X. H. (2012). Bioremediation of waste drilling fluid: Comparison of biostimulation and bioaugmentation. Desalination and Water Treatment, 48(1-3), 329–334. https://doi.org/10.1080/19443994.2012.698838. (PMID: 10.1080/19443994.2012.698838) ; Filatovas, E., Marcozzi, M., Mostarda, L., & Paulavičius, R. (2022). A MCDM-based framework for blockchain consensus protocol selection. Expert Systems with Applications, 204, 117609. https://doi.org/10.1016/j.eswa.2022.117609. (PMID: 10.1016/j.eswa.2022.117609) ; Fu, S., Y-z, X., & H-j, Z. (2022). Contingency response decision of network public opinion emergencies based on intuitionistic fuzzy entropy and preference information of decision makers. Scientific Reports, 12(1), 3246. https://doi.org/10.1038/s41598-022-07183-7. (PMID: 10.1038/s41598-022-07183-7) ; Görçün, Ö. F., Pamucar, D., & Biswas, S. (2023). The blockchain technology selection in the logistics industry using a novel MCDM framework based on Fermatean fuzzy sets and Dombi aggregation. Information Sciences, 635, 345–374. https://doi.org/10.1016/j.ins.2023.03.113. (PMID: 10.1016/j.ins.2023.03.113) ; Gupta, P. K., Mustapha, H. I., Singh, B., & Sharma, Y. C. (2022). Bioremediation of petroleum contaminated soil-water resources using neat biodiesel: A review. Sustainable Energy Technologies and Assessments, 53(Part D), 102703. https://doi.org/10.1016/j.seta.2022.102703. (PMID: 10.1016/j.seta.2022.102703) ; He, Z., Cao, H., Hu, Q., Zhang, Y., Nan, X., & Li, Z. (2023). Optimization of apple irrigation and N fertilizer in Loess Plateau of China based on ANP-EWM-TOPSIS comprehensive evaluation. Scientia Horticulturae, 311, 111794. https://doi.org/10.1016/j.scienta.2022.111794. (PMID: 10.1016/j.scienta.2022.111794) ; Hou, Y., Qi, S., You, H., Huang, Z., & Niu, Q. (2018). The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. Journal of Environmental Management, 228, 312–318. https://doi.org/10.1016/j.jenvman.2018.09.040. (PMID: 10.1016/j.jenvman.2018.09.040) ; Imam, A., Suman, S. K., Ghosh, D., & Kanaujia, P. K. (2019). Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. TrAC Trends in Analytical Chemistry, 118, 50–64. https://doi.org/10.1016/j.trac.2019.05.023. (PMID: 10.1016/j.trac.2019.05.023) ; Jiang, H., & Hu, B. Q. (2021). A novel three-way group investment decision model under intuitionistic fuzzy multi-attribute group decision-making environment. Information Sciences, 569, 557–581. https://doi.org/10.1016/j.ins.2021.05.026. (PMID: 10.1016/j.ins.2021.05.026) ; Kalisz, S., Kibort, K., Mioduska, J., Lieder, M., & Małachowska, A. (2022). Waste management in the mining industry of metals ores, coal, oil and natural gas - A review. Journal of environmental management, 304, 114239. https://doi.org/10.1016/j.jenvman.2021.114239. (PMID: 10.1016/j.jenvman.2021.114239) ; Leonard, S. A., & Stegemann, J. A. (2010). Stabilization/solidification of petroleum drill cuttings. Journal of Hazardous Materials, 174(1-3), 463–472. https://doi.org/10.1016/j.jhazmat.2009.09.075. (PMID: 10.1016/j.jhazmat.2009.09.075) ; Li, N., Zhang, R., & Xing, Y. (2019). A novel multi-attribute group decision-making method and its application in solving the downward referral problem in the hierarchical medical treatment system in China. IEEE Access, 7, 185205–185227. https://doi.org/10.1109/Access.2019.2959061. (PMID: 10.1109/Access.2019.2959061) ; Lima Junior, F. R., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21(1), 194–209. https://doi.org/10.1016/j.asoc.2014.03.014. (PMID: 10.1016/j.asoc.2014.03.014) ; Liu, M., Wang, X. L., & Li, Y. P. (2022). Service supplier selection under fuzzy and stochastic uncertain environments. Journal of Intelligent & Fuzzy Systems, 42(3), 1301–1315. https://doi.org/10.3233/Jifs-202657. (PMID: 10.3233/Jifs-202657) ; Liu, P. D., Rani, P., & Mishra, A. R. (2021). A novel Pythagorean fuzzy combined compromise solution framework for the assessment of medical waste treatment technology. Journal of Cleaner Production, 292, 126047. https://doi.org/10.1016/j.jclepro.2021.126047. (PMID: 10.1016/j.jclepro.2021.126047) ; Liu, S., Hu, Y. A., Zhang, X., Li, Y. F., & Liu, L. (2020). Blockchain service provider selection based on an integrated BWM-entropy-TOPSIS method under an intuitionistic fuzzy environment. IEEE Access, 8, 104148–104164. https://doi.org/10.1109/Access.2020.2999367. (PMID: 10.1109/Access.2020.2999367) ; Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B., Ferrari, A. M., Marinelli, S., & Savazza, R. (2016). Waste treatment: An environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technologies and Environmental Policy, 18(5), 1317–1332. https://doi.org/10.1007/s10098-015-1087-6. (PMID: 10.1007/s10098-015-1087-6) ; Loughney, S., Wang, J., Bashir, M., Armin, M., & Yang, Y. (2021). Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf. Sustainable Energy Technologies and Assessments, 47, 101440. https://doi.org/10.1016/j.seta.2021.101440. (PMID: 10.1016/j.seta.2021.101440) ; Ma, B., Wang, R., Ni, H., & Wang, K. (2019). Experimental study on harmless disposal of waste oil based mud using supercritical carbon dioxide extraction. Fuel, 252, 722–729. https://doi.org/10.1016/j.fuel.2019.04.111. (PMID: 10.1016/j.fuel.2019.04.111) ; Ma, S., Zhang, G., Shi, C., Dong, Q., & Ji, T. (2023). Achieving practical venue recycle of waste oil-based drilling fluids with vacuum distillation technology. ACS Omega. https://doi.org/10.1021/acsomega.3c00967. ; Manjare, S. D., & Dhingra, K. (2019). Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies, 2(3), 463–484. https://doi.org/10.1016/j.mset.2019.04.005. (PMID: 10.1016/j.mset.2019.04.005) ; Manupati, V. K., Ramkumar, M., Baba, V., & Agarwal, A. (2021). Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. Journal of Cleaner Production, 281, 125175. https://doi.org/10.1016/j.jclepro.2020.125175. (PMID: 10.1016/j.jclepro.2020.125175) ; Marwa, S. A.-A., & Abir, A.-T. (2007). Stabilisation/solidification of synthetic petroleum drill cuttings. Journal of hazardous materials, 141(2), 410–421. https://doi.org/10.1016/j.jhazmat.2006.05.079. (PMID: 10.1016/j.jhazmat.2006.05.079) ; Mishra, A. R., Mardani, A., Rani, P., & Zavadskas, E. K. (2020). A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures. Journal of Cleaner Production, 272, 122807. https://doi.org/10.1016/j.jclepro.2020.122807. (PMID: 10.1016/j.jclepro.2020.122807) ; Njuguna, J., Siddique, S., Bakah Kwroffie, L., Piromrat, S., Addae-Afoakwa, K., Ekeh-Adegbotolu, U., Oluyemi, G., Yates, K., Kumar Mishra, A., & Moller, L. (2022). The fate of waste drilling fluids from oil & gas industry activities in the exploration and production operations. Waste Management, 139, 362–380. https://doi.org/10.1016/j.wasman.2021.12.025. (PMID: 10.1016/j.wasman.2021.12.025) ; Osei-Twumasi, D., Anning, A. K., Fei-Baffoe, B., & Danquah, K. O. (2022). Suitability and economic viability of bioremediated hydrocarbon-contaminated drill mud waste for cultivation of selected food crops. Environmental Technology & Innovation, 28, 102705. https://doi.org/10.1016/j.eti.2022.102705. (PMID: 10.1016/j.eti.2022.102705) ; Peng, Z., Xu, J., Rong, S., Zhang, M., Wang, L., Jin, H., & Guo, L. (2023). Clean treatment and resource utilization of oilfield wastewater using supercritical water gasification. Journal of Cleaner Production, 411, 137239. https://doi.org/10.1016/j.jclepro.2023.137239. (PMID: 10.1016/j.jclepro.2023.137239) ; Pereira, L. B., Sad, C. M. S., Castro, E. V. R., Filgueiras, P. R., & Lacerda, V. (2022). Environmental impacts related to drilling fluid waste and treatment methods: A critical review. Fuel, 310, 122301. https://doi.org/10.1016/j.fuel.2021.122301. (PMID: 10.1016/j.fuel.2021.122301) ; Rani, P., Mishra, A. R., Krishankumar, R., Ravichandran, K. S., & Gandomi, A. H. (2022). A new Pythagorean fuzzy based decision framework for assessing healthcare waste treatment. IEEE Transactions on Engineering Management, 1–15. https://doi.org/10.1109/tem.2020.3023707. ; Ren, J. Z., & Liang, H. W. (2017). Multi-criteria group decision-making based sustainability measurement of wastewater treatment processes. Environmental Impact Assessment Review, 65, 91–99. https://doi.org/10.1016/j.eiar.2017.04.008. (PMID: 10.1016/j.eiar.2017.04.008) ; Rodriguez-Lopez, L. C., Ojeda-Morales, M. E., Cordova-Bautista, Y., Hernandez-Rivera, M. A., & Lopez-Lazaro, J. L. S. (2021). Recovery of impregnated hydrocarbon in drill cuttings using supercritical carbon dioxide. Journal of Environmental Management, 285, 112134. https://doi.org/10.1016/j.jenvman.2021.112134. (PMID: 10.1016/j.jenvman.2021.112134) ; Shahnazari, A., Rafiee, M., & Rohani, A. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40, 100737. https://doi.org/10.1016/j.seta.2020.100737. (PMID: 10.1016/j.seta.2020.100737) ; Shang, H., Snape, C. E., Kingman, S. W., & Robinson, J. P. (2006). Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity. Separation and Purification Technology, 49(1), 84–90. https://doi.org/10.1016/j.seppur.2005.08.012. (PMID: 10.1016/j.seppur.2005.08.012) ; Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7-8), 801–813. https://doi.org/10.1016/j.mcm.2006.03.023. (PMID: 10.1016/j.mcm.2006.03.023) ; Su, Z. X., Chen, M. Y., Xia, G. P., & Wang, L. (2011). An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Systems with Applications, 38(12), 15286–15295. https://doi.org/10.1016/j.eswa.2011.06.022. (PMID: 10.1016/j.eswa.2011.06.022) ; Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–477. https://doi.org/10.1016/s0165-0114(98)00402-3. (PMID: 10.1016/s0165-0114(98)00402-3) ; Tang, C., & Xie, S. X. (2017). Resource recovery and harmless treatment of waste oil-in-water drilling fluid. Environmental Engineering Research, 22(3), 277–280. https://doi.org/10.4491/eer.2016.151. (PMID: 10.4491/eer.2016.151) ; Vidonish, J. E., Zygourakis, K., & Masiello, C. A. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2(4), 426–437. https://doi.org/10.1016/J.Eng.2016.04.005. (PMID: 10.1016/J.Eng.2016.04.005) ; Wang, Y., Li, A., & Cui, C. (2021). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 265, 129071. https://doi.org/10.1016/j.chemosphere.2020.129071. (PMID: 10.1016/j.chemosphere.2020.129071) ; Wang, Y., Wang, T., & Yan, X. (2020a). Discussion on harmless treatment technologies of drilling fluid waste in oil and gas fields. IOP Conference Series: Earth and Environmental Science, 446(5), 52037. https://doi.org/10.1088/1755-1315/446/5/052037. (PMID: 10.1088/1755-1315/446/5/052037) ; Wang, Y., Wang, T., & Yan, X. (2020b). New drilling liquid waste harmless treatment technology of research. IOP Conference Series: Earth and Environmental Science, 461(1), 12042. https://doi.org/10.1088/1755-1315/461/1/012042. (PMID: 10.1088/1755-1315/461/1/012042) ; Wen, D., Fu, R., & Li, Q. (2021). Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. Journal of Hazardous Materials, 401, 123345. https://doi.org/10.1016/j.jhazmat.2020.123345. (PMID: 10.1016/j.jhazmat.2020.123345) ; Wood, D. A. (2016). Supplier selection for development of petroleum industry facilities, applying multi-criteria decision making techniques including fuzzy and intuitionistic fuzzy TOPSIS with flexible entropy weighting. Journal of Natural Gas Science and Engineering, 28, 594–612. https://doi.org/10.1016/j.jngse.2015.12.021. (PMID: 10.1016/j.jngse.2015.12.021) ; Yang, J., Sun, J., Wang, R., & Qu, Y. (2023). Treatment of drilling fluid waste during oil and gas drilling: A review. Environmental Science and Pollution Research, 1–21. https://doi.org/10.1007/s11356-022-25114-x. ; Yang, J.-S., Kwon, M. J., Choi, J., Baek, K., & O’Loughlin, E. J. (2014). The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere, 117, 79–86. https://doi.org/10.1016/j.chemosphere.2014.05.079. (PMID: 10.1016/j.chemosphere.2014.05.079) ; Yang, S., Wang, X., Pan, Y., Zhan, Q., & Yvan, L. E. (2023). Environmentally friendly drilling fluid lubricant: A review. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.3c00767. ; Yoon, K., & Hwang, C. L. (1981). Multiple attribute decision making: Methods and applications: A state-of-the-art survey. In Lecture notes in economics and mathematical systems. Springer-Verlag. ; Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3). ; Zheng, Y., Xu, J., & Chen, H. (2020). TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 17(5), 5604–5617. https://doi.org/10.3934/mbe.2020301. (PMID: 10.3934/mbe.2020301) ; Zhu, Z., Li, J., Xie, S., & Yuan, G. (2011). Research and application on resource utilization technology of oily waste drilling fluid. Petroleum Science and Technology, 29(14), 1470–1481. https://doi.org/10.1080/10916466.2010.490818. (PMID: 10.1080/10916466.2010.490818)
  • Contributed Indexing: Keywords: Drilling fluid waste; Environmental pollution; Multi-attribute group decision-making; Technique for order of preference by similarity to ideal solution; Treatment technology
  • Entry Date(s): Date Created: 20230905 Date Completed: 20230906 Latest Revision: 20231017
  • Update Code: 20240514

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -