Zum Hauptinhalt springen

Magnetic Resonance Water Tracer Imaging Using 17 O-Labeled Water.

Kameda, H ; Kinota, N ; et al.
In: Investigative radiology, Jg. 59 (2024), Heft 1, S. 92-103
academicJournal

Titel:
Magnetic Resonance Water Tracer Imaging Using 17 O-Labeled Water.
Autor/in / Beteiligte Person: Kameda, H ; Kinota, N ; Kato, D ; Fujii, T ; Harada, T ; Komaki, Y ; Sugimori, H ; Onodera, T ; Tomiyasu, M ; Obata, T ; Kudo, K
Zeitschrift: Investigative radiology, Jg. 59 (2024), Heft 1, S. 92-103
Veröffentlichung: 1998- : Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: Philadelphia., 2024
Medientyp: academicJournal
ISSN: 1536-0210 (electronic)
DOI: 10.1097/RLI.0000000000001021
Schlagwort:
  • Magnetic Resonance Spectroscopy methods
  • Magnetic Resonance Imaging methods
  • Software
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Review; Journal Article
  • Language: English
  • [Invest Radiol] 2024 Jan 01; Vol. 59 (1), pp. 92-103. <i>Date of Electronic Publication: </i>2023 Sep 15.
  • MeSH Terms: Magnetic Resonance Imaging* / methods ; Software* ; Magnetic Resonance Spectroscopy / methods
  • References: Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev . 2022;102:1025–1151. ; Weiskopf N, Edwards LJ, Helms G, et al. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nature Reviews Physics . 2021;3:570–588. ; Williamson NH, Komlosh ME, Benjamini D, et al. Limits to flow detection in phase contrast MRI. J Magn Reson Open . 2020;2–3:100004. doi:10.1016/j.jmro.2020.100004. (PMID: 10.1016/j.jmro.2020.100004) ; Arai T, Nakao S, Mori K, et al. Cerebral oxygen utilization analyzed by the use of oxygen-17 and its nuclear magnetic resonance. Biochem Biophys Res Commun . 1990;169:153–158. ; Arai T, Mori K, Nakao S, et al. In vivo oxygen-17 nuclear magnetic resonance for the estimation of cerebral blood flow and oxygen consumption. Biochem Biophys Res Commun . 1991;179:954–961. ; Fiat D, Ligeti L, Lyon RC, et al. In vivo 17 O NMR study of rat brain during 17 O 2 inhalation. Magn Reson Med . 1992;24:370–374. ; Fiat D, Dolinsek J, Hankiewicz J, et al. Determination of regional cerebral oxygen consumption in the human: 17 O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res . 1993;15:237–248. ; Fiat D, Kang S. Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 17 O in vivo NMR spectroscopy and magnetic resonance imaging. Part 2. Determination of CMRO2 for the rat by 17 O NMR, and CMRO2, rCBF and the partition coefficient for the cat by 17 O MRI. Neurol Res . 1993;15:7–22. ; Pekar J, Sinnwell T, Ligeti L, et al. Simultaneous measurement of cerebral oxygen consumption and blood flow using 17 O and 19 F magnetic resonance imaging. J Cereb Blood Flow Metab . 1995;15:312–320. ; Zhu X-H, Zhang Y, Tian R-X, et al. Development of (17)O NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci U S A . 2002;99:13194–13199. ; Zhang N, Zhu X-H, Lei H, et al. Simplified methods for calculating cerebral metabolic rate of oxygen based on 17 O magnetic resonance spectroscopic imaging measurement during a short 17 O 2 inhalation. J Cereb Blood Flow Metab . 2004;24:840–848. ; Zhu X-H, Zhang Y, Zhang N, et al. Noninvasive and three-dimensional imaging of CMRO(2) in rats at 9.4 T: reproducibility test and normothermia/hypothermia comparison study. J Cereb Blood Flow Metab . 2007;27:1225–1234. ; Zhu X-H, Zhang N, Zhang Y, et al. New insights into central roles of cerebral oxygen metabolism in the resting and stimulus-evoked brain. J Cereb Blood Flow Metab . 2009;29:10–18. ; Atkinson IC, Thulborn KR. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage . 2010;51:723–733. ; Hoffmann SH, Begovatz P, Nagel AM, et al. A measurement setup for direct 17 O MRI at 7 T. Magn Reson Med . 2011;66:1109–1115. ; Zhu X-H, Zhang Y, Wiesner HM, et al. In vivo measurement of CBF using 17 O NMR signal of metabolically produced H₂ 17 O as a perfusion tracer. Magn Reson Med . 2013;70:309–314. ; Gordji-Nejad A, Möllenhoff K, Oros-Peusquens AM, et al. Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields. MAGMA . 2014;27:81–93. ; Zhu X-H, Chen W. In vivo 17 O MRS imaging—quantitative assessment of regional oxygen consumption and perfusion rates in living brain. Anal Biochem . 2017;529:171–178. ; Kurzhunov D, Borowiak R, Hass H, et al. Quantification of oxygen metabolic rates in human brain with dynamic 17 O MRI: profile likelihood analysis. Magn Reson Med . 2017;78:1157–1167. ; Kurzhunov D, Borowiak R, Reisert M, et al. 3D CMRO2 mapping in human brain with direct 17 O MRI: comparison of conventional and proton-constrained reconstructions. Neuroimage . 2017;155:612–624. ; Niesporek SC, Umathum R, Lommen JM, et al. Reproducibility of CMRO2 determination using dynamic 17 O MRI. Magn Reson Med . 2018;79:2923–2934. ; Baligand C, Barret O, Tourais A, et al. Zero echo time 17 O-MRI reveals decreased cerebral metabolic rate of oxygen consumption in a murine model of amyloidosis. Metabolites . 2021;11:263. Available at: https://www.mdpi.com/2218-1989/11/5/263 . ; Kudo K, Harada T, Kameda H, et al. Indirect proton MR imaging and kinetic analysis of (17)O-labeled water tracer in the brain. Magn Reson Med Sci . 2018;17:223–230. ; Kudo K, Harada T, Kameda H, et al. Indirect MRI of (17) o-labeled water using steady-state sequences: signal simulation and preclinical experiment. J Magn Reson Imaging . 2018;47:1373–1379. ; Martí-Bonmatí L, Rodríguez-Ortega A, Ten-Esteve A, et al. Quantification of H 217 O by 1H-MR imaging at 3 T: a feasibility study. Eur Radiol Exp . 2021;5:56. ; Sugimori H, Kameda H, Harada T, et al. Quantitative magnetic resonance imaging for evaluating of the cerebrospinal fluid kinetics with 17 O-labeled water tracer: a preliminary report. Magn Reson Imaging . 2022;87:77–85. ; Harada T, Kudo K, Kameda H, et al. Phase I randomized trial of (17) O-labeled water: safety and feasibility study of indirect proton MRI for the evaluation of cerebral water dynamics. J Magn Reson Imaging . 2022;56:1874–1882. ; Tomiyasu M, Sahara Y, Mitsui E, et al. Intraocular water movement visualization using (1) H-MRI with eye drops of O-17-labeled saline: first-in-human study. J Magn Reson Imaging . 2023;57:845–853. ; Hosokawa Y, Onodera T, Homan K, et al. Establishment of a new qualitative evaluation method for articular cartilage by dynamic T2w MRI using a novel contrast medium as a water tracer. Cartilage . 2022;13:19476035221111504. ; Yoshida T, Naganawa S, Kobayashi M, et al. 17 O-labeled water distribution in the human inner ear: insights into lymphatic dynamics and vestibular function. Front Neurol . 2022;13:1016577. ; Tailor DR, Baumgardner JE, Regatte RR, et al. Proton MRI of metabolically produced H 217 O using an efficient 17 O 2 delivery system. Neuroimage . 2004;22:611–618. ; Cui W, Zhu X-H, Vollmers ML, et al. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field (17)O MR spectroscopy. J Cereb Blood Flow Metab . 2013;33:1846–1849. ; Zhu X-H, Lu M, Chen W. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17 O and 31P MRS at ultra-high field. J Magn Reson . 2018;292:155–170. ; Zhu X-H, Chen W. In vivo X-nuclear MRS imaging methods for quantitative assessment of neuroenergetic biomarkers in studying brain function and aging. Front Aging Neurosci . 2018;10:394. ; Wiesner HM, Balla DZ, Scheffler K, et al. Quantitative and simultaneous measurement of oxygen consumption rates in rat brain and skeletal muscle using 17 O MRS imaging at 16.4T. Magn Reson Med . 2021;85:2232–2246. ; Suzuki K, Igarashi H, Huber VJ, et al. Ligand-based molecular MRI: O-17 JJVCPE amyloid imaging in transgenic mice. J Neuroimaging . 2014;24:595–598. ; Borowiak R, Reichardt W, Kurzhunov D, et al. Initial investigation of glucose metabolism in mouse brain using enriched 17 O-glucose and dynamic 17 O-MRS. NMR Biomed . 2017;30:e3724. ; Alshuhri MS, Gallagher L, Work LM, et al. Direct imaging of glymphatic transport using H 217 O MRI. JCI Insight . 2021;6:e141159. doi:10.1172/jci.insight.141159. (PMID: 10.1172/jci.insight.141159) ; Mateescu GD, Yvars GM, Dular T. Oxygen-17 magnetic resonance imaging. Proc Inter Soc Magn Reson Med . 1987;6:929. ; Mateescu GD, Yvars GM, Maylish-Kogovsek L. Oxygen-17 MRI and MRS of the brain, the heart and coronary arteries. Proc Inter Soc Magn Reson Med . 1989;8:–659. ; Pekar J, Ligeti L, Ruttner Z, et al. In vivo measurement of cerebral oxygen consumption and blood flow using 17 O magnetic resonance imaging. Magn Reson Med . 1991;21:313–319. ; Borowiak R, Groebner J, Haas M, et al. Direct cerebral and cardiac 17 O-MRI at 3 tesla: initial results at natural abundance. MAGMA . 2014;27:95–99. ; Zhu XH, Merkle H, Kwag JH, et al. 17 O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med . 2001;45:543–549. ; Thelwall PE, Blackband SJ, Chen W. Field dependence of 17 O T1, T2 and SNR-in vitro and in vivo studies at 4.7, 11 and 17.6 Tesla. In: Proceedings of the 11th Annual Meeting of ISMRM . cds.ismrm.org . Toronto, Ontario, Canada: ISMRM; 2003:504. ; Fiat D, Hankiewicz J, Liu S, et al. 17 O magnetic resonance imaging of the human brain. Neurol Res . 2004;26:803–808. ; de Graaf RA, Brown PB, Rothman DL, et al. Natural abundance (17)O NMR spectroscopy of rat brain in vivo. J Magn Reson . 2008;193:63–67. ; Lu M, Zhang Y, Ugurbil K, et al. In vitro and in vivo studies of 17 O NMR sensitivity at 9.4 and 16.4 T. Magn Reson Med . 2013;69:1523–1527. ; Wiesner HM, Balla DZ, Shajan G, et al. (17)O relaxation times in the rat brain at 16.4 tesla. Magn Reson Med . 2016;75:1886–1893. ; Budinger TF, Bird MD. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: technical feasibility, safety, and neuroscience horizons. Neuroimage . 2018;168:509–531. ; Grucker D, Mauss Y, Steibel J, et al. Chemical and molecular exchange effects on T2 relaxation of living tissues: a pulse spacing dependence study. Biochim Biophys Acta . 1986;887:249–255. ; Hopkins AL, Barr RG. Oxygen-17 compounds as potential NMR T2 contrast agents: enrichment effects of H2(17)O on protein solutions and living tissues. Magn Reson Med . 1987;4:399–403. ; Yeung HN, Lent AH. Proton transverse relaxation rate of 17 O-enriched water. Magn Reson Med . 1987;5:87–92. ; Sergeyev NM, Sergeyeva ND, Raynes WT. Isotope effects on the 17 O, 1H coupling constant and the 17 O-{1H} nuclear Overhauser effect in water. J Magn Reson . 1999;137:311–315. ; Burnett LJ, Zeltmann AH. 1H– 17 O spin-spin coupling constant in liquid water. J Chem Phys . 1974;60:4636–4637. ; Stolpen AH, Reddy R, Leigh JS. 17 O-decoupled proton MR spectroscopy and imaging in a tissue model. J Magn Reson . 1997;125:1–7. ; Kwong KK, Xiong J, Kuan WP, et al. Measurement of water movement in the rabbit eye in vivo using H2(17)O. Magn Reson Med . 1991;22:443–450. ; Hopkins AL, Lust WD, Haacke EM, et al. The stability of proton T2 effects of oxygen-17 water in experimental cerebral ischemia. Magn Reson Med . 1991;22:167–174. ; Narazaki M, Kanazawa Y, Koike S, et al. Quantitative 17 O imaging towards oxygen consumption study in tumor bearing mice at 7 T. Magn Reson Imaging . 2013;31:643–650. ; Kwong KK, Hopkins AL, Belliveau JW, et al. Proton NMR imaging of cerebral blood flow using H2(17)O. Magn Reson Med . 1991;22:154–158. ; Ronen I, Merkle H, Ugurbil K, et al. Imaging of H 217 O distribution in the brain of a live rat by using proton-detected 17 O MRI. Proc Natl Acad Sci U S A . 1998;95:12934–12939. ; Reddy R, Stolpen AH, Leigh JS. Detection of 17 O by proton T1 rho dispersion imaging. J Magn Reson B . 1995;108:276–279. ; Rizi RR, Charagundla SR, Song HK, et al. Proton T1rho-dispersion imaging of rodent brain at 1.9 T. J Magn Reson Imaging . 1998;8:1090–1096. ; Charagundla SR, Stolpen AH, Leigh JS, et al. Off-resonance proton T1rho dispersion imaging of 17 O-enriched tissue phantoms. Magn Reson Med . 1998;39:588–595. ; Tailor DR, Roy A, Regatte RR, et al. Indirect 17(O)-magnetic resonance imaging of cerebral blood flow in the rat. Magn Reson Med . 2003;49:479–487. ; Tailor DR, Poptani H, Glickson JD, et al. High-resolution assessment of blood flow in murine RIF-1 tumors by monitoring uptake of H(2)(17)O with proton T(1rho)-weighted imaging. Magn Reson Med . 2003;49:1–6. ; Mellon EA, Beesam RS, Kasam M, et al. Single shot T1rho magnetic resonance imaging of metabolically generated water in vivo. Adv Exp Med Biol . 2009;645:279–286. ; Igarashi H, Tsujita M, Kwee IL, et al. Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17 O JJVCPE MRI study in knockout mice. Neuroreport . 2014;25:39–43. ; Huber VJ, Igarashi H, Ueki S, et al. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [ 17 O]H 2 O JJVCPE MRI study. Neuroreport . 2018;29:697–703. ; Reddy R, Stolpen AH, Charagundla SR, et al. 17 O-decoupled 1H detection using a double-tuned coil. Magn Reson Imaging . 1996;14:1073–1078. ; Charagundla SR, Duvvuri U, Noyszewski EA, et al. 17 O-decoupled (1)H spectroscopy and imaging with a surface coil: STEAM decoupling. J Magn Reson . 2000;143:39–44. ; Kim SG, Ackerman JJ. Multicompartment analysis of blood flow and tissue perfusion employing D 2 O as a freely diffusible tracer: a novel deuterium NMR technique demonstrated via application with murine RIF-1 tumors. Magn Reson Med . 1988;8:410–426. ; Ilvonen K, Palva L, Perämäki M, et al. MRI-based D 2 O/H 2 O-contrast method to study water flow and distribution in heterogeneous systems: demonstration in wood xylem. J Magn Reson . 2001;149:36–44. ; Wang F-N, Peng S-L, Lu C-T, et al. Water signal attenuation by D 2 O infusion as a novel contrast mechanism for 1H perfusion MRI. NMR Biomed . 2013;26:692–698. ; Chen L, Liu J, Chu C, et al. Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics . 2021;11:6240–6250. ; Bednarik P, Goranovic D, Svatkova A, et al. 1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain. Nat Biomed Eng . 2023. doi:10.1038/s41551-023-01035-z. (PMID: 10.1038/s41551-023-01035-z) ; Niess F, Hingerl L, Strasser B, et al. Noninvasive 3-dimensional 1 H-magnetic resonance spectroscopic imaging of human brain glucose and neurotransmitter metabolism using deuterium labeling at 3T: feasibility and interscanner reproducibility. Invest Radiol . 2023;58:431–437. ; Koletzko B, Sauerwald T, Demmelmair H. Safety of stable isotope use. Eur J Pediatr . 1997;156(Suppl 1):S12–S17. ; Frackowiak RSJ, Lenzi G-L, Jones T, et al. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15 O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr . 1980;4:727–736. ; Mintun MA, Raichle ME, Martin WR, et al. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med . 1984;25:177–187. ; Leenders KL, Perani D, Lammertsma AA, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain . 1990;113(Pt 1):27–47. ; Ohta S, Meyer E, Fujita H, et al. Cerebral [ 15 O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab . 1996;16:765–780. ; Fujita H, Meyer E, Reutens DC, et al. Cerebral [ 15 O] water clearance in humans determined by positron emission tomography: II. Vascular responses to vibrotactile stimulation. J Cereb Blood Flow Metab . 1997;17:73–79. ; Watanabe Y, Hyllbrant BB, Långström B. Tracing oxygen metabolism by use of positron emitter oxygen-15. Biochem Biophys Res Commun . 1997;231:131–134. ; Zhang K, Herzog H, Mauler J, et al. Comparison of cerebral blood flow acquired by simultaneous [ 15 O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab . 2014;34:1373–1380. ; Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [ 15 O]-gas PET: a technical review in the era of PET/MRI. Neuroimage . 2020;220:117136. ; Maaniitty T, Knuuti J, Saraste A. 15 O-water PET MPI: current status and future perspectives. Semin Nucl Med . 2020;50:238–247. ; Weiskopf N, Mohammadi S, Lutti A, et al. Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr Opin Neurol . 2015;28:313–322. ; Tabelow K, Balteau E, Ashburner J, et al. hMRI—a toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage . 2019;194:191–210. ; Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol . 2017;35:172–178. ; Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging . 2020;51:11–24. ; Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective. Korean J Radiol . 2020;21:1199–1209. ; Taoka T. Neurofluid as assessed by diffusion-weighted imaging. Magn Reson Imaging Clin N Am . 2021;29:243–251. ; Bito Y, Harada K, Ochi H, et al. Low b-value diffusion tensor imaging for measuring pseudorandom flow of cerebrospinal fluid. Magn Reson Med . 2021;86:1369–1382. ; Petitclerc L, Hirschler L, Wells JA, et al. Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. Neuroimage . 2021;245:118755. ; Yamada S, Miyazaki M, Kanazawa H, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology . 2008;249:644–652. ; Arai T, Nakao S, Morikawa S, et al. Measurement of local cerebral blood flow by magnetic resonance imaging: in vivo autoradiographic strategy using 17 O-labeled water. Brain Res Bull . 1998;45:451–456. ; de Crespigny AJ, D'Arceuil HE, Engelhorn T, et al. MRI of focal cerebral ischemia using (17)O-labeled water. Magn Reson Med . 2000;43:876–883. ; Zhang X, Zhu X-H, Tian R, et al. Measurement of arterial input function of 17 O water tracer in rat carotid artery by using a region-defined (REDE) implanted vascular RF coil. MAGMA . 2003;16:77–85. ; Kurzhunov D, Borowiak R, Reisert M, et al. Direct estimation of 17 O MR images (DIESIS) for quantification of oxygen metabolism in the human brain with partial volume correction. Magn Reson Med . 2018;80:2717–2725. ; DeLaPaz R, Gupte P. Potential application of 17 O MRI to human ischemic stroke. In: LaManna J, Puchowicz M, Xu K, et al, eds. Oxygen Transport to Tissue XXXII. Advances in Experimental Medicine and Biology . Boston, MA: Springer US; 2011:215–222. ; Zhu X-H, Chen JM, Tu T-W, et al. Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. Neuroimage . 2013;64:437–447. ; Mellon EA, Beesam RS, Baumgardner JE, et al. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17 O MRI during precision 17 O 2 inhalation in swine. J Neurosci Methods . 2009;179:29–39. ; Hoffmann SH, Radbruch A, Bock M, et al. Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. MAGMA . 2014;27:579–587. ; Neveu M-A, Joudiou N, De Preter G, et al. 17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors. NMR Biomed . 2017;30. doi:10.1002/nbm.3726. (PMID: 10.1002/nbm.3726) ; Paech D, Nagel AM, Schultheiss MN, et al. Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma. Radiology . 2020;295:181–189. ; Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev . 1951;3:1–41. ; Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev . 2013;93:1847–1892. ; Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med . 2015;212:991–999. ; Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature . 2015;523:337–341. ; Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med . 2012;4:147ra111. ; Jessen NA, Munk ASF, Lundgaard I, et al. The glymphatic system: a beginner's guide. Neurochem Res . 2015;40:2583–2599. ; Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol . 2018;17:1016–1024. ; Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol . 2018;13:379–394. ; Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol . 2017;74:91–99. ; Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell . 2020;182:270–296. ; Reeves BC, Karimy JK, Kundishora AJ, et al. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure hydrocephalus. Trends Mol Med . 2020;26:285–295. ; Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech . 2001;52:31–37. ; Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med . 2022;219:e20211275. doi:10.1084/jem.20211275. (PMID: 10.1084/jem.20211275) ; Orešković D, Radoš M, Klarica M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience . 2017;354:69–87. ; Zhang Y, Xu K, Liu Y, et al. Increased cerebral vascularization and decreased water exchange across the blood-brain barrier in aquaporin-4 knockout mice. PloS One . 2019;14:e0218415. ; Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part II-imaging techniques and clinical applications. Radiology . 2021;301:516–532. ; Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part I—anatomy and physiology. Radiology . 2021;301:502–514. ; Gomolka RS, Hablitz LM, Mestre H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. Elife . 2023;12. doi:10.7554/eLife.82232. (PMID: 10.7554/eLife.82232) ; Edeklev CS, Halvorsen M, Løvland G, et al. Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients. AJNR Am J Neuroradiol . 2019;40:1257–1264. ; Ringstad G, Valnes LM, Dale AM, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight . 2018;3:e121537. doi:10.1172/jci.insight.121537. (PMID: 10.1172/jci.insight.121537) ; Nicaise C, Mitrecic D, Demetter P, et al. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res . 2009;1301:152–162. ; Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci . 2013;33:18190–18199. ; Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun . 2018;9:4878. ; Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv . 2019;5:eaav5447. ; Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest . 2018;128:2157–2167. ; Naganawa S, Taoka T, Ito R, et al. The glymphatic system in humans: investigations with magnetic resonance imaging. Invest Radiol . 2023. doi:10.1097/RLI.0000000000000969 Publish ahead of print. (PMID: 10.1097/RLI.0000000000000969) ; Harrison IF, Siow B, Akilo AB, et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. Elife . 2018;7. doi:10.7554/eLife.34028. (PMID: 10.7554/eLife.34028) ; Cheng HM, Kwong KK, Xiong J, et al. Visualization of water movement in the living rabbit eye. Graefes Arch Clin Exp Ophthalmol . 1992;230:62–65. ; Obata T, Ikehira H, Koga M, et al. Deuterium magnetic resonance imaging of rabbit eye in vivo. Magn Reson Med . 1995;33:569–572. ; Eck BL, Yang M, Elias JJ, et al. Quantitative MRI for evaluation of musculoskeletal disease: cartilage and muscle composition, joint inflammation, and biomechanics in osteoarthritis. Invest Radiol . 2023;58:60–75. ; McCommis KS, He X, Abendschein DR, et al. Cardiac 17 O MRI: toward direct quantification of myocardial oxygen consumption. Magn Reson Med . 2010;63:1442–1447. ; Lu M, Atthe B, Mateescu GD, et al. Assessing mitochondrial respiration in isolated hearts using (17)O MRS. NMR Biomed . 2012;25:883–889. ; Campos Pamplona C, Castelein JJ, Hamelink TTL, et al. 247.5: Magnetic resonance imaging of renal oxygen metabolism by means of 17-O administration during ex vivo organ perfusion. Transplantation . 2022;106(9S):S170.
  • Entry Date(s): Date Created: 20230914 Date Completed: 20231216 Latest Revision: 20231216
  • Update Code: 20231217

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -