Zum Hauptinhalt springen

A comprehensive health risk assessment associated with bioaccumulation of heavy metals and nutrients in selected macrophytes of Loktak Lake, Manipur, India.

Laishram, RJ ; Singh, TB ; et al.
In: Environmental science and pollution research international, Jg. 30 (2023-10-01), Heft 48, S. 105329-105352
Online academicJournal

Titel:
A comprehensive health risk assessment associated with bioaccumulation of heavy metals and nutrients in selected macrophytes of Loktak Lake, Manipur, India.
Autor/in / Beteiligte Person: Laishram, RJ ; Singh, TB ; Alam, W
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 30 (2023-10-01), Heft 48, S. 105329-105352
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2023
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-023-29606-2
Schlagwort:
  • Lakes
  • Bioaccumulation
  • Environmental Monitoring
  • India
  • Zinc
  • Organic Chemicals
  • Water
  • Risk Assessment
  • Nutrients
  • Metals, Heavy analysis
  • Water Pollutants, Chemical analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2023 Oct; Vol. 30 (48), pp. 105329-105352. <i>Date of Electronic Publication: </i>2023 Sep 15.
  • MeSH Terms: Metals, Heavy* / analysis ; Water Pollutants, Chemical* / analysis ; Lakes ; Bioaccumulation ; Environmental Monitoring ; India ; Zinc ; Organic Chemicals ; Water ; Risk Assessment ; Nutrients
  • References: Adekola FA, Eletta OAA (2007) A study of heavy metal pollution of Asa River, Ilorin, Nigeria; Trace metal monitoring and geochemistry. Environ Monit Assess 125:157–163. (PMID: 10.1007/s10661-006-9248-z) ; Alhashemi AH, Sekhavatjou MS, Kiabi BH, Karbassi AR (2012) Bioaccumulation of trace elements in water, sediment and six fish species from a freshwater wetland, Iran. Microchem J 104:1–6. (PMID: 10.1016/j.microc.2012.03.002) ; Anandkumar A, Nagarajan R, Gounder ES, Prabakaran K (2022) Seasonal variation and mobility of trace metals in the beach sediments of NW Borneo. Chemosphere 287:132069. (PMID: 10.1016/j.chemosphere.2021.132069) ; AOAC (1995) Official Methods of Analysis, 16th edn. Association of Official Analytical Chemists, Washington DC. ; APHA (2005) Standards for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC, USA. ; Baker AJM, Brooks RR (1989) Terrestrial Higher Plants which Hyperaccumulate Metallic Elements. A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery 1:81–126. https://doi.org/10.1080/01904168109362867. (PMID: 10.1080/01904168109362867) ; Bermudez GMA, Jasan R, Pla R, Pignata ML (2011) Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. J Hazard Mater 193:264–271. (PMID: 10.1016/j.jhazmat.2011.07.058) ; Bhatti ZI, Ishtiaq M, Khan SA, Nawab J, Ghani J, Ullah Z, Khan S, Baig SA, Muhammad I, Din ZU, Khan A (2022) Contamination level, source identification and health risk assessment of potentially toxic elements in drinking water sources of mining and non-mining areas of Khyber Pakhtunkhwa, Pakistan. J Water Health 20(9):1343. https://doi.org/10.2166/wh.2022.087. (PMID: 10.2166/wh.2022.087) ; BIS (2012) Indian standard, drinking water specification. Bureau of Indian standards, New Delhi. Accessed 10th Feb 2023. ; Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645. (PMID: 10.1016/j.ecolind.2009.11.002) ; Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that Hyper Accumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. CAB International, Oxon, pp 203–226. (PMID: 10.1079/9780851992365.0000) ; CAFT (2012) Laboratory manual. In: Training programme on advances in agro-technologies for improving soil, plant and atmosphere systems. Centre of Advanced Faculty Training, Jabalpur. http://jnkvv.org/FACULTY/CAFT.aspx . Accessed 15th Sept 2022. ; Chandra R, Yadav S, Yadav S (2017) Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol Eng 98:134–145. https://doi.org/10.1016/j.ecoleng.2016.10.017. (PMID: 10.1016/j.ecoleng.2016.10.017) ; Chaney RI (1989) Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow NJ, Goldshmid J (eds) Inorganic Contaminants in the Vadose Zone. Springer, Berlin, pp 140–158. (PMID: 10.1007/978-3-642-74451-8_10) ; CGWB (2013) Ground water information booklet of Chandel district, Manipur, technical report series: D, no: 10/2013–14, Central Groundwater Board, North Eastern Region, Ministry of Water Resources, Govt. of India, New Delhi. ; Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol Ind 6:388–393. https://doi.org/10.1016/j.ecolind.2005.04.004. (PMID: 10.1016/j.ecolind.2005.04.004) ; Dvorak P, Roy K, Andreji J, Liskova ZD, Mraz J (2020) Vulnerability assessment of wild fish population to heavy metals in military training area: synthesis of a framework with example from Czech Republic. Ecol Indic 110:105920. (PMID: 10.1016/j.ecolind.2019.105920) ; El-Alfy MA, Serag M, Basiony AI, Fathi M, Darwish DH (2023) Influence of land cover indices and surface temperature on the metals bioaccumulation by three macrophytes in Lake Burullus, Egypt. J Coast Conserv 26:5. https://doi.org/10.1007/s11852-023-00934-2. (PMID: 10.1007/s11852-023-00934-2) ; Elhaddad E, Salaah SM, Salama HMM, El-Sherif DM, Gaber HS (2022) Risk assessment and hazardous effects of metal contamination in O. niloticus and S. galilaeus from four islands of the River Nile. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-022-03589-1. (PMID: 10.1007/s00128-022-03589-1) ; Elowa SS, Azab AM, Tolba M, Shaban WM (2022) Estimation of hazards and potential health risks for heavy metals by consumption of four cichlid species from Lake Burullus and the River Nile, Egypt. Egypt J Aquat Biol Fish 26(4):1093–1111. (PMID: 10.21608/ejabf.2022.257142) ; Fang Y, Nie Z, Liu F, Die Q, He J, Huang Q (2014) Concentration and health risk evaluation of heavy metals in market-sold vegetables and fishes based on questionnaires in Beijing. China. Environ Sci Pollut Res 21(19):11401–11408. https://doi.org/10.1007/s11356-014-3127-x. (PMID: 10.1007/s11356-014-3127-x) ; FAO (2008) Guide to laboratory establishment for plant nutrient analysis. In: FAO fertilizer and plant nutrition bulletin, food and agriculture Organization of the United Nations, Rome, Italy. Accessed 10th Sept 2022. ; Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in large scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397. (PMID: 10.1016/j.scitotenv.2012.06.091) ; FDA (U.S. Food and Drug Administration) (2016) Food labeling: revision of the nutrition and supplement facts labels. Fed Regist 81:33894–33895. Accessed 18th Sept 2022. ; Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals andPotential application to phytoremediation. J Biotechnol 99:259–278. https://doi.org/10.1016/S0168-1656(02)00218-3. (PMID: 10.1016/S0168-1656(02)00218-3) ; Flefel H, Nokhrin D, Donnik I (2020) Determine heavy metals in water, aquatic plants, and sediments in water systems. E3S Web Conf 222:02028. https://doi.org/10.1051/e3sconf/202022202028. (PMID: 10.1051/e3sconf/202022202028) ; Gupta AK, Sinha S (2008) Decontamination and/or revegetation of fly ash dykes through naturally growing plants. J Hazard Mater 153(3):1078–1087. https://doi.org/10.1016/j.jhazmat.2007.09.062. (PMID: 10.1016/j.jhazmat.2007.09.062) ; Gurzau ES, Neagu C, Gurzau AC (2003) Essential metals-case study on Iron. Ecotoxicol Environ Saf 58(1):190–200. (PMID: 10.1016/S0147-6513(03)00062-9) ; Habib SS, Batool AI, Rehman MFU, Naz S (2023) Assessment and bioaccumulation of heavy metals in fish feeds, water, and some tissues of Cyprinus carpio cultured in different environments (biofloc technology and earthen pond system). Biol Trace Elem Res 201:3474–3486. https://doi.org/10.1007/s12011-022-03415-z. (PMID: 10.1007/s12011-022-03415-z) ; Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275. (PMID: 10.1016/S0045-6535(03)00185-1) ; Hasan Z, Anwar Z, Khattak KU, Islam M, Khan RU, Khattak JZK (2012) Civic pollution and its effect on water quality of river Toi at District Kohat, NWFP. Res J Environ Earth Sci 4:334–339. ; Hong Y, Liao W, Yan Z, Bai Y, Feng C, Xu Z, Xu D (2020) Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J Chem. https://doi.org/10.1155/2020/9010348. (PMID: 10.1155/2020/9010348) ; Huang CF, Hsu CJ, Liu SH, Lin-Shiauand SY (2008) Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: Oxidative stress and downregulated Na+/K+-ATPase involved. Toxicol Lett 176:188–197. (PMID: 10.1016/j.toxlet.2007.11.004) ; Huang J, Wu Y, Li Y, Sun J, Xie Y, Fan Z (2022) Do trace metal(loid)s in road soils pose health risks to tourists? A case of a highly-visited national park in China. J Environ Sci 111:61–74. (PMID: 10.1016/j.jes.2021.02.032) ; Hussain R, Khattak SA, Sattar S et al (2020) Evaluation of the contaminated soil and its impacts on Tobacco (Nicotiana tabacum L.) crops in Swabi, Pakistan. J Himal Earth Sci 53:34–48. ; Ibrahim SI, Tsepav MT, Zainab S-SE (2021) Assessment of seasonal concentration of heavy metals in water and sediments of Lapai/Agaie Reservoir. IOSR J Appl Geol Geophys 9(2):49–59. https://doi.org/10.9790/0990-0902014959. (PMID: 10.9790/0990-0902014959) ; Islam MdS, Ahmed MdK, Habibullah-Al-Mamun Md (2017) Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh. Arch Environ Occup Health 72(1):26–38. (PMID: 10.1080/19338244.2016.1152946) ; Islam MD, Hasan MM, Rahaman A, Haque P, Islam MS, Rahman MM (2020) Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Appl Sci 2:1315. https://doi.org/10.1007/s42452-020-3123-3. (PMID: 10.1007/s42452-020-3123-3) ; Janadeleh H, Kameli MA (2017) Metals contamination in sediment and their bioaccumulation in plants and three fish species from freshwater ecosystem. Toxin Rev 1–9. https://doi.org/10.1080/15569543.2017.1309551. ; Janadeleh H, Kardani M (2016) Heavy metals concentrations and human health risk assessment for three common species of fish from Karkheh River, Iran. Iran J Toxicol 10:31–37. (PMID: 10.29252/arakmu.10.6.31) ; Javed M, Usmani N (2016) Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. Springer plus 5:776. https://doi.org/10.1186/s40064-016-2471-3. (PMID: 10.1186/s40064-016-2471-3) ; Jha P, Samal AC, Santra SC, Dewanji A (2016) Heavy metal accumulation potential of some wetland plants growing naturally in the city of Kolkata, India. Am J Plant Sci 7:2112–2137. https://doi.org/10.4236/ajps.2016.715189. (PMID: 10.4236/ajps.2016.715189) ; Joyce C (2012) Preface: Wetland services and management. Hydrobiologia 692:1–3. (PMID: 10.1007/s10750-012-1179-9) ; Kacholi DS, Sahu M (2018) Levels and health risk assessment of heavy metals in soil, water, and vegetables of Dar es Salaam, Tanzania. J Chem. https://doi.org/10.1155/2018/1402674. (PMID: 10.1155/2018/1402674) ; Kamal MR, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039. https://doi.org/10.1016/s0160-4120(03)00091-6. (PMID: 10.1016/s0160-4120(03)00091-6) ; Khan YK, Shah MH (2023) Fractionation, source apportionment, and health risk assessment of selected metals in the soil of public parks of Lahore, Pakistan. Environ Earth Sci 82:311. https://doi.org/10.1007/s12665-023-11013-y. (PMID: 10.1007/s12665-023-11013-y) ; Khan MH, Nafees M, Muhammad N, Ullah U, Hussain R, Bilal M (2021) Assessment of drinking water sources for water quality, human health risks, and pollution sources: a case study of the district Bajaur, Pakistan. Arch Environ Contam Toxicol 80:41–54. https://doi.org/10.1007/s00244-020-00801-3. (PMID: 10.1007/s00244-020-00801-3) ; Kumar B, Kumar KS, Priya M, Mukhopadhyay D, Shah R (2010) Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India. Toxicol Environ Chem 92:243–260. (PMID: 10.1080/02772240902942394) ; Ladislas S, El-Mufleh A, Gerente C, Chazarenc F, Andres Y, Bechet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban storm water runoff. Water Air Soil Pollut 223:877–888. (PMID: 10.1007/s11270-011-0909-3) ; Laishram RJ, Alam W (2019) Geochemical assessment of Nambul River water quality for domestic and irrigation uses, Imphal, Manipur. Taiwan Water Conserv 67(4):23–40. ; Laishram RJ, Yumnam G, Alam W (2022) Assessment of ecohydrogeochemical status of freshwater Loktak Lake of Manipur, India. Environ Monit Assess 194:659. https://doi.org/10.1007/s10661-022-10336-w. (PMID: 10.1007/s10661-022-10336-w) ; Lakatos G (1983) Accumulation of elements in biotecton forming on reed (Phragmites australis Cav.Trin.exSteudel) in two shallow lakes in Hungary. In: Proceedings of the international symposium on aquatic Macrophytes, held at Katholieke Universiteit, Nijmegen, pp 117–122. ; LDA, WISA (1999) Loktak, Project highlights. In: Loktak newsletter, vol 1. Loktak Development Authority, Imphal and Wetland International-South Asia, New Delhi. ; LDA, WISA (2002) Loktak, Phumdis management. In: Loktak newsletter vol 2.Loktak development authority, Imphaland wetland international-South Asia, New Delhi Accessed 15th Jan 2023. ; Li Y, Yu Z, Song X, Mu Q (2006) Trace metal concentrations in suspended particles, sediments and clams from jiaozhou Bay of China. Environ Monit Assess 121:491–501. (PMID: 10.1007/s10661-005-9149-6) ; Li J, Huang ZY, Hu Y, Yang H (2013) Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ Sci Pollut Res 20:2937–2947. (PMID: 10.1007/s11356-012-1207-3) ; Lin Y, Han P, Huang Y, Yuan GL, Guo JX, Li J (2017) Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: multivariate statistical analysis and redundancy analysis. J Geochem Explor 173:110–118. (PMID: 10.1016/j.gexplo.2016.12.006) ; Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18:978–986. (PMID: 10.1007/s11356-011-0453-0) ; Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023. (PMID: 10.1016/j.ecoenv.2015.12.023) ; Markmanuel DP, JrM Horsfall (2016) Evaluation of carcinogenic and non-carcinogenic risk of cadmium and nickel in land snails (A. achatina and L. flammea) and marine snails (P. aurita and T. fuscatus) commonly consumed in Nigeria. Acta Chim Pharm Indica 6(4):123–134. ; Matache ML, Marin C, Rozylowicz L, Tudorache A (2013) Plants accumulating heavy metals in the Danube River wetlands. J Environ Health Sci Eng 11:3–9. (PMID: 10.1186/2052-336X-11-39) ; Mayanglambam B, Neelam SS (2020a) Physicochemistry and water quality of Loktak Lake water, Manipur, India. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1742888. (PMID: 10.1080/03067319.2020.1742888) ; Mayanglambam B, Neelam SS (2020b) Geochemistry and pollution status of surface sediments of Loktak Lake, Manipur, India. SN Appl Sci 2:2097. https://doi.org/10.1007/s42452-020-03903-8. (PMID: 10.1007/s42452-020-03903-8) ; McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123. ; Meitei MD, Prasad MNV (2016) Bioaccumulation of nutrients and metals in sediment, water, and phoomdi from Loktak Lake (Ramsar site), Northeast India: phytoremediation options and risk assessment. Environ Monit Assess 188:329. https://doi.org/10.1007/s10661-016-5339-7. (PMID: 10.1007/s10661-016-5339-7) ; Muhammad S, Ahmad K (2020) Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit-Baltistan: evaluation of potential risks and provenance. Environ Technol Innov 20:101159. https://doi.org/10.1016/j.eti.2020.101159. (PMID: 10.1016/j.eti.2020.101159) ; Nabi M (2021) Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya. India. Environ Nanotechnol Monit Manag 16. ; NBSS and LUP (2001) Land capability classes of catchment area of Loktak Lake, Manipur. National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat and Kolkata. Accessed 11th Sept 2022. ; Nordberg GF, Gerhardsson L, Mumtaz MM, Ruiz P, Fowler BA (2007) Interactions and mixtures in metal toxicology. In: Nordberg GF, Fowler BA, Nordberg M (ed) Handbook on the Toxicology of Metals, 4 th edn. Academic Press 1:213–238. https://doi.org/10.1016/B978-0-444-59453-2.00011-1. ; NWA (2009) National wetland Atlas: Manipur. SAC/RESA/AFEG/NWIA/ATLAS/03/2009, Space ApplicationsCentre, ISRO, Ahmedabad, India, p 96. Accessed 15th Jan 2023. ; Ohiagu FO, Lele KC, Chikezie PC, Verla AW, Enyoh CE (2020) Bioaccumulation and health risk assessment of heavy metals in Musa paradisiaca, Zea mays, Cucumeropsis manii and Manihot esculenta cultivated in Onne, Rivers State, Nigeria. Environ Anal Health Toxicol 35(2). https://doi.org/10.5620/eaht.e2020011. ; Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2:71. https://doi.org/10.4236/ajcc.2013.21008. (PMID: 10.4236/ajcc.2013.21008) ; Petrov DS, Korotaeva AE, Pashkevich MA, Chukaeva MA (2023) Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment. Environ Monit Assess 195:122. https://doi.org/10.1007/s10661-022-10750-0. (PMID: 10.1007/s10661-022-10750-0) ; Plum LM, Rink L, Haase H (2010) The essential toxin: Impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365. (PMID: 10.3390/ijerph7041342) ; Prusty P, Farooq SH, Zimik HV, Barik SS (2018) Assessment of the factors controlling groundwater quality in a coastal aquifer adjacent to the Bay of Bengal, India. Environ Earth Sci 77:762. https://doi.org/10.1007/s12665-018-7943-z. (PMID: 10.1007/s12665-018-7943-z) ; Rai N, Sharma NK, Panchal A (2019) Heavy metal accumulation by selected plant species along the national highway: a case study of Udaipur, Rajasthan, India. Int J Environ Anal Chem 99(11):1078–1089. https://doi.org/10.1080/03067319.2019.1616703. (PMID: 10.1080/03067319.2019.1616703) ; Ricolfi L, Barbieri M, Muteto PV, Nigro A, Sappa G, Vitale S (2020) Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Geochem Health 42:2733–2745. https://doi.org/10.1007/s10653-019-00507-z. (PMID: 10.1007/s10653-019-00507-z) ; Rinklebe J, Knox AS, Paller M (ed) (2016) Trace Elements in Waterlogged Soils and Sediments, 1st edn., CRC Press. https://doi.org/10.1201/9781315372952. ; Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474. https://doi.org/10.1038/nbt0595-468. (PMID: 10.1038/nbt0595-468) ; Scofield BD, Fileds SF, Chess DW (2023) Aquatic macrophytes show distinct spatial trends in contaminant metal and nutrient concentrations in Coeur d’Alene Lake, USA. Environ Sci Pollut Res 30:66610–66624. https://doi.org/10.1007/s11356-023-27211-x. (PMID: 10.1007/s11356-023-27211-x) ; Singh NKS, Devi CB, Sudarshan M, Meetei NS, Singh TB, Singh NR (2013) Influence of Nambul river on the water quality of fresh water in Loktak lake. Int J Water Resour Environ Eng 5(6):321–327. ; Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Res 38(18):3980–3992. https://doi.org/10.1016/j.watres.2004.06.011. (PMID: 10.1016/j.watres.2004.06.011) ; Singh N, Kaur M, Katnoria JK (2017) Analysis on bioaccumulation of metals in aquatic environment of Beas River Basin: a case study from Kanjli wetland. GeoHealth 1:93–105. https://doi.org/10.1002/2017GH000062. (PMID: 10.1002/2017GH000062) ; Song B, Lei M, Chen T, Zheng YM, Xie YF, Li XY, Gao D (2009) Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J Environ Sci 21:1702–1709. https://doi.org/10.1016/s1001-0742(08)62476-6. (PMID: 10.1016/s1001-0742(08)62476-6) ; Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70(4):290–295. https://doi.org/10.1590/s0103-90162013000400010. (PMID: 10.1590/s0103-90162013000400010) ; Tang Z, Liu X, Niu X, Yin H, Liu M, Zhang D, Guo H (2023) Ecological risk assessment of aquatic organisms induced by heavy metals in the estuarine waters of the Pearl River. Sci Rep 13:9145. https://doi.org/10.1038/s41598-023-35798-x. (PMID: 10.1038/s41598-023-35798-x) ; Tiri A, Lahbari N, Boudoukha A (2017) Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Appl Water Sci 7:4197–4206. https://doi.org/10.1007/s13201-014-0261-z. (PMID: 10.1007/s13201-014-0261-z) ; Trisal CL, Manihar T (2002) Management of Phumdis in Loktak Lake. In: Proceedings of a workshop on Phumdis management, Imphal, Manipur. Loktak Development Authority, Manipur, India and Wetlands International South Asia, New Delhi, India. ; USEPA (United States Environmental Protection Agency) (1989) Office of Water Regulations and Standard: Guidance manual for assessing human health risks from chemically contaminated fish and shellfish. U.S. Environmental Protection Agency, Washington, DC EPA-503/8-89-002. Accessed 7th Sept 2022. ; USEPA (1991) In: U.S.E.A. Protection (ed) Risk assessment guidance for superfund (RAGS), volume I: Human health evaluation manual (HHEM) supplemental guidance. Office of Emergency and Remedial Response, Washington DC. Accessed 12th Sept 2022. ; USEPA (1995) Laboratory methods for soil and foliar analysis in long-term environmental monitoring programs. In: United states environmental protection agency, Washington DC, p EPA/600/R-95/077. Accessed 11th Sept 2022. ; USEPA (2007) Framework for metal risk assessment. In: U.S Environmental Protection Agency, office of the ScienceAdvisor, Washington DC EPA 120/R-07/001. Accessed 15th Sept 2022. ; USEPA (2010) Sediment sampling. In: SESD operating procedure. U.S. Environmental Protection Agency, science and ecosystem support division, Athens. SESDPROC-200-R2. Accessed 19th Sept 2022. ; USEPA (2011) USEPA regional screening level (RSL) summary table: November 2011. Accessed 20th Nov 2022. ; USEPA (2012) EPA region III risk-based concentration (RBC) table 2008 region III, 1650 Arch Street, Philadelphia, Pennsylvania 19103. Accessed 20th Nov 2022. ; Usman ARA, Alkredaa RS, Al-Wabel MI (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 97:263–270. https://doi.org/10.1016/j.ecoenv.2013.08.009. (PMID: 10.1016/j.ecoenv.2013.08.009) ; Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37. (PMID: 10.1016/j.scitotenv.2004.09.044) ; Wang M, Han Q, Gui C, Cao J, Liu Y, He X, He Y (2019) Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China. Sci Total Environ 676:1–10. (PMID: 10.1016/j.scitotenv.2019.03.396) ; WAPCOS (1993) Detailed project report for development of Loktak Lake Sub-Basin Manipur. In: Water and power consultancy services (India), Limited, New Delhi, India. ; WHO (1996) Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva, Switzerland. ; Wisheu IC, Keddy PA, Moore DRJ, McCanny SJ, Gaudet CL (1991) Effects of eutrophication on wetland vegetation. In: Kusler J, Smardon R (eds) Wetlands of the Great Lakes: protection and restoration policies; status of the science. Managers, New York, pp 112–121. ; Xiao R, Guo D, Ali A, Mi S, Liu T, Ren C, Li R, Zhang Z (2019) Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: a case study in Hanzhong, Shaanxi, China. Environ Pollut 248:349–357. (PMID: 10.1016/j.envpol.2019.02.045) ; Yacoub AM, Mahmoud SA, Abdel-Satar AM (2021) Accumulation of heavy metals in tilapia fish species and related histopathological changes in muscles, gills and liver of Oreochromis niloticus occurring in the area of Qahr El-Bahr, Lake Al-Manzalah, Egypt. Int J Oceanogr Hydrobiol 50(1):1–15. https://doi.org/10.2478/oandhs-2021-0001. (PMID: 10.2478/oandhs-2021-0001) ; Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353. (PMID: 10.1016/j.jtemb.2005.02.007) ; Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016. (PMID: 10.1016/j.scitotenv.2006.01.016) ; Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones trated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34. (PMID: 10.1007/s11270-008-9788-7) ; Zhu YS, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51(351):1635–1645. https://doi.org/10.1093/jexbot/51.351.1635. (PMID: 10.1093/jexbot/51.351.1635)
  • Grant Information: DST/INSPIRE Fellowship/2018/IF180332 DST-INSPIRE Government of India
  • Contributed Indexing: Keywords: Bioaccumulation; Hazard index (HI); Health risk; Heavy metals; Loktak Lake; Macrophytes; Target hazard quotient (THQ)
  • Substance Nomenclature: 0 (Metals, Heavy) ; J41CSQ7QDS (Zinc) ; 0 (Organic Chemicals) ; 059QF0KO0R (Water) ; 0 (Water Pollutants, Chemical)
  • Entry Date(s): Date Created: 20230915 Date Completed: 20231023 Latest Revision: 20231023
  • Update Code: 20240514

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -