Zum Hauptinhalt springen

Topical application of a TRPA1 antagonist reduced nociception and inflammation in a model of traumatic muscle injury in rats.

Kudsi, SQ ; de David Antoniazzi CT ; et al.
In: Inflammopharmacology, Jg. 31 (2023-12-01), Heft 6, S. 3153-3166
Online academicJournal

Titel:
Topical application of a TRPA1 antagonist reduced nociception and inflammation in a model of traumatic muscle injury in rats.
Autor/in / Beteiligte Person: Kudsi, SQ ; de David Antoniazzi CT ; Camponogara, C ; Meira, GM ; de Amorim Ferreira M ; da Silva AM ; Dalenogare, DP ; Zaccaron, R ; Dos Santos Stein, C ; Silveira, PCL ; Moresco, RN ; Oliveira, SM ; Ferreira, J ; Trevisan, G
Link:
Zeitschrift: Inflammopharmacology, Jg. 31 (2023-12-01), Heft 6, S. 3153-3166
Veröffentlichung: Basel ; Boston : Birkhäuser ; <i>Original Publication</i>: Dordrecht, The Netherlands ; Norwell, MA, USA : Kluwer Academic Publishers, c1991-, 2023
Medientyp: academicJournal
ISSN: 1568-5608 (electronic)
DOI: 10.1007/s10787-023-01337-3
Schlagwort:
  • Rats
  • Male
  • Animals
  • Rats, Wistar
  • TRPA1 Cation Channel
  • Pain drug therapy
  • Anti-Inflammatory Agents pharmacology
  • Analgesics pharmacology
  • Muscles
  • Nociception
  • Inflammation drug therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Inflammopharmacology] 2023 Dec; Vol. 31 (6), pp. 3153-3166. <i>Date of Electronic Publication: </i>2023 Sep 27.
  • MeSH Terms: Nociception* ; Inflammation* / drug therapy ; Rats ; Male ; Animals ; Rats, Wistar ; TRPA1 Cation Channel ; Pain / drug therapy ; Anti-Inflammatory Agents / pharmacology ; Analgesics / pharmacology ; Muscles
  • References: Antoniazzi CT, De Prá SD, Ferro PR et al (2018) Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 125:28–38. (PMID: 10.1016/j.ejps.2018.09.012) ; Araújo DSM, Miya-Coreixas VS, Pandolfo P et al (2017) Cannabinoid receptors and TRPA1 on neuroprotection in a model of retinal ischemia. Exp Eye Res 154:116–212. (PMID: 2787648510.1016/j.exer.2016.11.015) ; Asgar J, Zhang Y, Saloman J et al (2015) The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience 310:206–215. (PMID: 2639342810.1016/j.neuroscience.2015.09.042) ; Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Sig Transduct 2012:1–17. (PMID: 10.1155/2012/982794) ; Berke MS, Colding-Jørgensen P, Hestehave S et al (2022) Effects of buprenorphine on acute pain and inflammation in the adjuvant-induced monoarthritis rat model. Heliyon 8:e11554. (PMID: 36411938967450210.1016/j.heliyon.2022.e11554) ; Brancaccio P, Lippi G, Maffulli N (2006) Biochemical markers of muscular damage. Clin Chem Lab Med 48:757–767. (PMID: 10.1515/CCLM.2010.179) ; Brum ES, Fialho MFP, Fischer SPM et al (2020) Relevance of mitochondrial dysfunction in the reserpine-induced experimental fibromyalgia model. Mol Neurobiol 57:4202–4217. (PMID: 3268599710.1007/s12035-020-01996-1) ; Camponogara C, Oliveira SM (2022) Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? Environ Toxicol Pharmacol 92:103836. (PMID: 3524876010.1016/j.etap.2022.103836) ; Camponogara C, Casoti R, Brusco I et al (2019) Tabernaemontana catharinensis leaves effectively reduce the irritant contact dermatitis by glucocorticoid receptor dependent pathway in mice. Biomed Pharmacother 109:646–657. (PMID: 3040407210.1016/j.biopha.2018.10.132) ; Camponogara C, Brum ES, Pegoraro NS et al (2020) Neuronal and non-neuronal transient receptor potential ankyrin 1 mediates UVB radiation-induced skin inflammation in mice. Life Sci 262:118557. (PMID: 3303557810.1016/j.lfs.2020.118557) ; Conklin DJ, Guo Y, Nystoriak MA et al (2019) TRPA1 channel contributes to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ 316:889–899. (PMID: 10.1152/ajpheart.00106.2018) ; De Logu F, Nassini R, Materazzi S et al (2017) Schwann cells TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 8:1887. (PMID: 29192190570949510.1038/s41467-017-01739-2) ; De Logu F, Puma S, Landini L et al (2019) The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel. Pharmacol Res 142:127–139. (PMID: 3079492310.1016/j.phrs.2019.02.019) ; De Logu F, Nassini R, Hegron A et al (2022) Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 13:646. (PMID: 35115501881398710.1038/s41467-022-28204-z) ; Deacon RM (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1:118–121. (PMID: 1740622210.1038/nprot.2006.19) ; Derry S, Conaghan P, Da Silva J et al (2016) Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007400.pub3. (PMID: 10.1002/14651858.CD007400.pub3280273896463878) ; Dos Santos Haupenthal DP, Zortea D, Zaccaron RP et al (2020) Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. Mater Sci Eng C Mater Biol Appl 110:110681. (PMID: 3220410910.1016/j.msec.2020.110681) ; Fernandes T, Pedrinelli A, Hernandez A (2011) Lesão muscular—fisiopatologia, diagnóstico e Tratamento. Rev Brasil Ortoped 46:247–255. (PMID: 10.1590/S0102-36162011000300003) ; Fialho MFP, Brum ES, Pegoraro NS et al (2020) Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. J Dermatol Sci 97:135–142. (PMID: 3198230310.1016/j.jdermsci.2020.01.005) ; Gane EM, Brakenridge CL, Smits EJ et al (2018) The impact of musculoskeletal injuries sustained in road traffic crashes on work-related outcomes: a protocol for a systematic review. Syst Rev 7:202. (PMID: 30458851624770410.1186/s13643-018-0869-4) ; Gonçalves WA, Ferreira RCM, Rezende BM et al (2021) Endogenous opioid and cannabinoid systems modulate the muscle pain: a pharmacological study into the peripheral site. Eur J Pharmacol 901:174089. (PMID: 3382692210.1016/j.ejphar.2021.174089) ; Gregory NS, Sluka KA (2014) Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 20:327–348. (PMID: 24633937429446910.1007/7854_2014_294) ; Gregory NS, Gibson-Corley K, Frey-Law L et al (2013) Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain 154:2668–2676. (PMID: 23906552395741610.1016/j.pain.2013.07.047) ; Hatano N, Itoh Y, Suzuki H et al (2012) Hypoxia-inducible factor-1α (HIF1α) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem 287:31962–31972. (PMID: 22843691344252810.1074/jbc.M112.361139) ; Koivisto P, Belvisi M, Gaudet R et al (2022) Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 21:41–59. (PMID: 3452669610.1038/s41573-021-00268-4) ; Kondo T, Sakurai J, Miwa H et al (2013) Activation of p38 MAPK through transient receptor potential A1 in a rat model of gastric distension-induced visceral pain. NeuroReport 24:68–72. (PMID: 2322265810.1097/WNR.0b013e32835c7df2) ; Kudsi SQ, Antoniazzi CT, Camponogara C et al (2020) Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats. Eur J Pharmacol 883:173284. (PMID: 3267918610.1016/j.ejphar.2020.173284) ; Landini L, De Araujo DSM, Titiz M et al (2022) TRPA1 role in inflammatory disorders: what is known so far? Int J Mol Sci 23:4529. (PMID: 35562920910126010.3390/ijms23094529) ; Lee KI, Lee HT, Lin HC et al (2016) Role of transient receptor potential ankyrin 1 channels in Alzheimer’s disease. J Neuroinflamm 13:92. (PMID: 10.1186/s12974-016-0557-z) ; Lesnak JB, Inoue S, Lima L et al (2020) Testosterone protects against the development of widespread muscle pain in mice. Pain 161:2898–2908. (PMID: 32658149766972810.1097/j.pain.0000000000001985) ; Lin AH, Liu MH, Ko HK et al (2015) Lung epithelial TRPA1 transduces the extracellular ROS into transcriptional regulation of lung inflammation induced by cigarette smoke: the role of Influxed Ca 2+ . Mediat Inflamm 2015:1–16. ; Liu J, Saul D, Böker KO et al (2018) Current methods for skeletal muscle tissue repair and regeneration. BioMed Res Int 2018:1–11. ; Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. (PMID: 1184660910.1006/meth.2001.1262) ; Malin S, Molliver D, Christianson JA et al (2011) TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 31:10516–10528. (PMID: 21775597318086010.1523/JNEUROSCI.2992-10.2011) ; Manojlović V, Erčulj F (2019) Using blood lactate concentration to predict muscle damage and jump performance response to maximal stretch-shortening cycle exercise. J Sports Med Phys Fit 59:581–586. ; McGrath JC, Lilley E (2015) implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172:3189–3193. (PMID: 25964986450035810.1111/bph.12955) ; Nagakura Y, Miwa M, Yoshida M et al (2019) Spontaneous pain-associated facial expression and efficacy of clinically used drugs in the reserpine-induced rat model of fibromyalgia. Eur J Pharmacol 864:172716. (PMID: 3158986810.1016/j.ejphar.2019.172716) ; Osterloh M, Böhm M, Kalbe B et al (2016) Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch 468:321–333. (PMID: 2632851910.1007/s00424-015-1729-x) ; Parenti A, De Logu F, Geppetti P et al (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells? Brit J Pharmacol 173:953–969. (PMID: 10.1111/bph.13392) ; Perrot S, Cohen M, Barke A et al (2019) The IASP classification of chronic pain for ICD-11: chronic secondary musculoskeletal pain. Pain 160:77–82. (PMID: 3058607410.1097/j.pain.0000000000001389) ; Queme LF, Jankowski MP (2019) Sex differences and mechanisms of muscle pain. Curr Opin Physiol 11:1–6. (PMID: 31245656659440210.1016/j.cophys.2019.03.006) ; Riemann A, Schneider B, Ihling A et al (2011) Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS ONE 6:e22445. (PMID: 21818325314422910.1371/journal.pone.0022445) ; Rizzi CF, Mauriz JL, Freitas Corrêa DS et al (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713. (PMID: 1679999810.1002/lsm.20371) ; Ro JY, Lee JS, Zhang Y (2009) Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain 144:270–277. (PMID: 19464796278955010.1016/j.pain.2009.04.021) ; Rossato MF, Rigo FK, Oliveira SM et al (2018) Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur J Pharmacol 828:42–45. (PMID: 2957789310.1016/j.ejphar.2018.03.033) ; Ruela G, Barreto SM, Griep RH et al (2022) Job stress and chronic and widespread musculoskeletal pain: a cross-sectional analysis from the Brazilian Longitudinal Study of Adult Health Musculoskeletal. Pain 163:2044–2051. (PMID: 3512169810.1097/j.pain.0000000000002602) ; Sakai K, Sanders KM, Youssef MR et al (2016) Mouse model of imiquimod-induced psoriatic itch. Pain 157:2536–2543. (PMID: 27437787506915210.1097/j.pain.0000000000000674) ; Santos DFDSD, Melo BA, Jorge CO et al (2017) Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience 358:58–69. (PMID: 2867371510.1016/j.neuroscience.2017.06.041) ; Seminowicz DA, de Martino E, Schabrun SM et al (2018) Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain. Pain 159:2486–2492. (PMID: 3043152010.1097/j.pain.0000000000001350) ; Silveira PCL, Victor E, Schefer D et al (2010) Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound Med Biol 36:44–50. (PMID: 1990074710.1016/j.ultrasmedbio.2009.09.001) ; Silveira PCL, Scheffer D, Glaser V et al (2016) Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 50:503–513. (PMID: 2698389410.3109/10715762.2016.1147649) ; Sotocinal S, Sorge R, Zaloum A et al (2011) The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 7:55. (PMID: 218014093163602) ; Sugiyama D, Kang S, Arpey N et al (2017a) Hydrogen peroxide induces muscle nociception via transient receptor potential ankyrin 1 receptors. Anesthesiology 127:695–708. (PMID: 2864001610.1097/ALN.0000000000001756) ; Sugiyama D, Kang S, Brennan TJ et al (2017b) Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor. PLoS ONE 12:e0170410. (PMID: 28103292524586610.1371/journal.pone.0170410) ; Talavera K, Startek JB, Alvarez-Collazo J et al (2019) Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev 100:725–803. (PMID: 3167061210.1152/physrev.00005.2019) ; Theofilidis G, Bogdanis G, Koutedakis Y et al (2018) Monitoring exercise induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers. Sports 6:53. (PMID: 10.3390/sports6040153) ; Thirupathi A, Pinho R (2018) Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem 74:359–367. (PMID: 2971394010.1007/s13105-018-0633-1) ; Trevisan G, Benemei S, Materazzi S et al (2016) TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 139:1361–1377. (PMID: 2698418610.1093/brain/aww038) ; Viero FT, Rodrigues P, Frare JM et al (2022) Unpredictable sound stress model causes migraine-like behaviors in mice with sexual dimorphism. Front Pharmacol 13:911105. (PMID: 35784726924357810.3389/fphar.2022.911105) ; Volpi G, Facchinetti F, Moretto N et al (2011) Cigarette smoke and α, β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br J Pharmacol 163:649–661. (PMID: 21306579310162510.1111/j.1476-5381.2011.01253.x) ; Wang S, Brigoli B, Lim J et al (2018) Roles of TRPV1 and TRPA1 in spontaneous pain from inflamed masseter muscle. Neurosci 384:290–299. (PMID: 10.1016/j.neuroscience.2018.05.048) ; Xing J, Li J (2017) TRPA1 function in skeletal muscle sensory neurons following femoral artery occlusion. Cell Physiol Biochem 42:2307–2317. (PMID: 2884819610.1159/000480003) ; Yang W, Hu P (2018) Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration. Cell Immunol 326:2–7. (PMID: 2886712110.1016/j.cellimm.2017.08.006) ; Yap JMG, Ueda T, Takeda N et al (2020) An inflammatory stimulus sensitizes TRPA1 channel to increase cytokine release in human lung fibroblasts. Cytokine 129:155027. (PMID: 3205014510.1016/j.cyto.2020.155027) ; Zhou Y, Han D, Follansbee T et al (2019) Transient receptor potential ankyrin 1 (TRPA1) positively regulates imiquimod-induced, psoriasiform dermal inflammation in mice. J Cell Mol Med 23:4819–4828. (PMID: 31111624658459310.1111/jcmm.14392)
  • Grant Information: #303531/2020-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico; #23081.080328/2021-87 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  • Contributed Indexing: Keywords: HC-030031; Inflammation; Muscle pain; Myalgia; TRP channels
  • Substance Nomenclature: 0 (2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide) ; 0 (TRPA1 Cation Channel) ; 0 (Anti-Inflammatory Agents) ; 0 (Analgesics)
  • Entry Date(s): Date Created: 20230926 Date Completed: 20231204 Latest Revision: 20231204
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -