Zum Hauptinhalt springen

Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation.

Xu, G ; Li, W ; et al.
In: Biological trace element research, Jg. 202 (2024-06-01), Heft 6, S. 2797-2811
Online academicJournal

Titel:
Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation.
Autor/in / Beteiligte Person: Xu, G ; Li, W ; Zhao, Y ; Fan, T ; Gao, Q ; Wang, Y ; Zhang, F ; Gao, M ; An, Z ; Yang, Z
Link:
Zeitschrift: Biological trace element research, Jg. 202 (2024-06-01), Heft 6, S. 2797-2811
Veröffentlichung: [London, Clifton, N. J.] Humana Press., 2024
Medientyp: academicJournal
ISSN: 1559-0720 (electronic)
DOI: 10.1007/s12011-023-03883-x
Schlagwort:
  • Animals
  • Mice
  • Male
  • Kidney metabolism
  • Kidney drug effects
  • Kidney pathology
  • Oxidative Stress drug effects
  • Cadmium toxicity
  • Mice, Inbred C57BL
  • Inflammation metabolism
  • Inflammation chemically induced
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Biol Trace Elem Res] 2024 Jun; Vol. 202 (6), pp. 2797-2811. <i>Date of Electronic Publication: </i>2023 Oct 07.
  • MeSH Terms: Oxidative Stress* / drug effects ; Cadmium* / toxicity ; Mice, Inbred C57BL* ; Inflammation* / metabolism ; Inflammation* / chemically induced ; Animals ; Mice ; Male ; Kidney / metabolism ; Kidney / drug effects ; Kidney / pathology
  • References: Turner A (2019) Cadmium pigments in consumer products and their health risks. Sci Total Environ 657:1409–1418. https://doi.org/10.1016/j.scitotenv.2018.12.096. (PMID: 10.1016/j.scitotenv.2018.12.09630677907) ; Huang Y, Liu J, Yang L, Li X, Hu G, Wang G, Sun G, Li Z (2021) Fate of lead and cadmium in precalciner cement plants and their atmospheric releases. ACS Omega 6(33):21265–21275. https://doi.org/10.1021/acsomega.1c01329. (PMID: 10.1021/acsomega.1c01329344717318387992) ; Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032. (PMID: 10.1093/bmb/ldg03214757716) ; Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA (2022) Biological effects of human exposure to environmental cadmium. Biomolecules 13(1). https://doi.org/10.3390/biom13010036. ; Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11). https://doi.org/10.3390/ijerph17113782. ; Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6. (PMID: 10.1007/978-3-7643-8340-4_622945569) ; Taha MM, Mahdy-Abdallah H, Shahy EM, Ibrahim KS, Elserougy S (2018) Impact of occupational cadmium exposure on bone in sewage workers. Int J Occup Environ Health 24(3–4):101–108. https://doi.org/10.1080/10773525.2018.1518745. (PMID: 10.1080/10773525.2018.1518745302220696237150) ; Liang Y, Zeng T, Tian J, Yan J, Lan Z, Chen J, Xin X, Lei B, Cai Z (2021) Long-term environmental cadmium exposure induced serum metabolic changes related to renal and liver dysfunctions in a female cohort from Southwest China. Sci Total Environ 798:149379. https://doi.org/10.1016/j.scitotenv.2021.149379. (PMID: 10.1016/j.scitotenv.2021.14937934375234) ; Nawrot TS, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y, Vangronsveld J, Roels HA, Staessen JA (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116(12):1620–1628. https://doi.org/10.1289/ehp.11667. (PMID: 10.1289/ehp.11667190797112599754) ; Kumar S, Sharma A (2019) Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health 34(4):327–338. https://doi.org/10.1515/reveh-2019-0016. (PMID: 10.1515/reveh-2019-001631129655) ; Jain RB (2020) Cadmium and kidney function: concentrations, variabilities, and associations across various stages of glomerular function. Environ Pollut 256:113361. https://doi.org/10.1016/j.envpol.2019.113361. (PMID: 10.1016/j.envpol.2019.11336131668955) ; Wilk A, Romanowski M, Wiszniewska B (2021) Analysis of cadmium, mercury, and lead concentrations in erythrocytes of renal transplant recipients from Northwestern Poland. Biol (Basel) 10(1). https://doi.org/10.3390/biology10010062. ; Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399. https://doi.org/10.1080/09603123.2013.835032. (PMID: 10.1080/09603123.2013.83503224117228) ; Rinaldi M, Micali A, Marini H, Adamo EB, Puzzolo D, Pisani A, Trichilo V, Altavilla D, Squadrito F, Minutoli L (2017) Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem 24(35):3879–3893. https://doi.org/10.2174/0929867324666170801101448. (PMID: 10.2174/092986732466617080110144828762312) ; Yang H, Shu Y (2015) Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 16(1):1484–1494. https://doi.org/10.3390/ijms16011484. (PMID: 10.3390/ijms16011484255846114307315) ; Nordberg M, Nordberg GF (2022) Metallothionein and cadmium toxicology-historical review and commentary. Biomolecules 12(3). https://doi.org/10.3390/biom12030360. ; Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of lead, cadmium, mercury and arsenic- induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012. (PMID: 10.1016/j.toxrep.2018.05.012299920946035907) ; Friberg L (1984) Cadmium and the kidney. Environ Health Perspect 54:1–11. https://doi.org/10.1289/ehp.84541. (PMID: 10.1289/ehp.8454167345471568168) ; Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294. https://doi.org/10.1146/annurev.pharmtox.39.1.267. (PMID: 10.1146/annurev.pharmtox.39.1.26710331085) ; Park JH, Lee BM, Kim HS (2021) Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J Toxicol Environ Health B Crit Rev 24(3):95–118. https://doi.org/10.1080/10937404.2020.1860842. (PMID: 10.1080/10937404.2020.186084233357071) ; Hernandez-Cruz EY, Amador-Martinez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J (2022) Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 361:109961. https://doi.org/10.1016/j.cbi.2022.109961. (PMID: 10.1016/j.cbi.2022.10996135500868) ; Han YL, Sheng Z, Liu GD, Long LL, Wang YF, Yang WX, Zhu JQ (2015) Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris. Ecotoxicol Environ Saf 119:1–8. https://doi.org/10.1016/j.ecoenv.2015.04.055. (PMID: 10.1016/j.ecoenv.2015.04.05525958029) ; Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM (2022) The role of inflammation in cadmium nephrotoxicity: NF-kappaB comes into view. Life Sci 308:120971. https://doi.org/10.1016/j.lfs.2022.120971. (PMID: 10.1016/j.lfs.2022.12097136130617) ; Zhao Y, Yan T, Xiong C, Chang M, Gao Q, Yao S, Wu W, Yi X, Xu G (2021) Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Lepr(db/db) mice. BMJ Open Diabetes Res Care 9(1). https://doi.org/10.1136/bmjdrc-2021-002260. ; Mason SA, Trewin AJ, Parker L, Wadley GD (2020) Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol 35:101471. https://doi.org/10.1016/j.redox.2020.101471. (PMID: 10.1016/j.redox.2020.101471321272897284926) ; Tsou PS, Balogh B, Pinney AJ, Zakhem G, Lozier A, Amin MA, Stinson WA, Schiopu E, Khanna D, Fox DA, Koch AE (2014) Lipoic acid plays a role in scleroderma: insights obtained from scleroderma dermal fibroblasts. Arthritis Res Ther 16(5):411. https://doi.org/10.1186/s13075-014-0411-6. (PMID: 10.1186/s13075-014-0411-625123250) ; Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Zhai XY (2021) A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis. Front Physiol 12:680544. https://doi.org/10.3389/fphys.2021.680544. (PMID: 10.3389/fphys.2021.680544346301328493959) ; Veljkovic AR, Nikolic RS, Kocic GM, Pavlovic DD, Cvetkovic TP, Sokolovic DT, Jevtovic TM, Basic JT, Laketic DM, Marinkovic MR, Stojanovic SR, Djordjevic BS, Krsmanovic MM (2012) Protective effects of glutathione and lipoic acid against cadmium-induced oxidative stress in rat’s kidney. Ren Fail 34(10):1281–1287. https://doi.org/10.3109/0886022X.2012.723661. (PMID: 10.3109/0886022X.2012.72366123009295) ; Lee DC, Choi H, Oh JM, Lee DH, Kim SW, Kim SW, Kim BG, Cho JH, Lee J (2019) Protective effects of alpha-lipoic acid on cultured human nasal fibroblasts exposed to urban particulate matter. Int Forum Allergy Rhinol 9(6):638–647. https://doi.org/10.1002/alr.22296. (PMID: 10.1002/alr.2229630758914) ; Tudose M, Culita DC, Musuc AM, Somacescu S, Ghica C, Chifiriuc MC, Bleotu C (2017) Lipoic acid functionalized SiO(2)@Ag nanoparticles. Synthesis, characterization and evaluation of biological activity. Mater Sci Eng C Mater Biol Appl 79:499–506. https://doi.org/10.1016/j.msec.2017.05.083. (PMID: 10.1016/j.msec.2017.05.08328629046) ; Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, Radmayr D, Zschocke J, Koch J, Sperl W (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89(6):792–797. https://doi.org/10.1016/j.ajhg.2011.11.011. (PMID: 10.1016/j.ajhg.2011.11.011221526803234378) ; Zou H, Chen Y, Qu H, Sun J, Wang T, Ma Y, Yuan Y, Bian J, Liu Z (2022) Microplastics exacerbate cadmium-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int J Mol Sci 23(22). https://doi.org/10.3390/ijms232214411. ; Fujishiro H, Sumino M, Sumi D, Umemoto H, Tsuneyama K, Matsukawa T, Yokoyama K, Himeno S (2022) Spatial localization of cadmium and metallothionein in the kidneys of mice at the early phase of cadmium accumulation. J Toxicol Sci 47(12):507–517. https://doi.org/10.2131/jts.47.507. (PMID: 10.2131/jts.47.50736450495) ; Luo T, Liu G, Long M, Yang J, Song R, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Zou H, Liu Z (2017) Treatment of cadmium-induced renal oxidative damage in rats by administration of alpha-lipoic acid. Environ Sci Pollut Res Int 24(2):1832–1844. https://doi.org/10.1007/s11356-016-7953-x. (PMID: 10.1007/s11356-016-7953-x27796992) ; Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, Gu L, Lu R, Ni Z (2019) PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol 26:101254. https://doi.org/10.1016/j.redox.2019.101254. (PMID: 10.1016/j.redox.2019.101254312298416597739) ; Chen C, Han X, Wang G, Liu D, Bao L, Jiao C, Luan J, Hou Y, Xu Y, Wang H, Zhang Q, Zhou H, Fu J, Pi J (2021) Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice. Arch Toxicol 95(3):883–893. https://doi.org/10.1007/s00204-020-02964-3. (PMID: 10.1007/s00204-020-02964-333398418) ; RafatiRahimzadeh M, RafatiRahimzadeh M, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145. https://doi.org/10.22088/cjim.8.3.135. (PMID: 10.22088/cjim.8.3.135) ; Gu X, Xu L, Wang Z, Ming X, Dang P, Ouyang W, Lin C, Liu X, He M, Wang B (2021) Assessment of cadmium pollution and subsequent ecological and health risks in Jiaozhou Bay of the Yellow Sea. Sci Total Environ 774:145016. https://doi.org/10.1016/j.scitotenv.2021.145016. (PMID: 10.1016/j.scitotenv.2021.14501633607433) ; Fang J, Xie S, Chen Z, Wang F, Chen K, Zuo Z, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Liu W, Geng Y (2021) Protective effect of vitamin E on cadmium-induced renal oxidative damage and apoptosis in rats. Biol Trace Elem Res 199(12):4675–4687. https://doi.org/10.1007/s12011-021-02606-4. (PMID: 10.1007/s12011-021-02606-433565019) ; Sanjeev S, Bidanchi RM, Murthy MK, Gurusubramanian G, Roy VK (2019) Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res Int 26(20):20631–20653. https://doi.org/10.1007/s11356-019-05420-7. (PMID: 10.1007/s11356-019-05420-731104231) ; Li Z, Chi H, Zhu W, Yang G, Song J, Mo L, Zhang Y, Deng Y, Xu F, Yang J, He Z, Yang X (2021) Cadmium induces renal inflammation by activating the NLRP3 inflammasome through ROS/MAPK/NF-kappaB pathway in vitro and in vivo. Arch Toxicol 95(11):3497–3513. https://doi.org/10.1007/s00204-021-03157-2. (PMID: 10.1007/s00204-021-03157-234510229) ; Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767. https://doi.org/10.1016/j.scitotenv.2019.04.395. (PMID: 10.1016/j.scitotenv.2019.04.39531085492) ; Ge J, Zhang C, Sun YC, Zhang Q, Lv MW, Guo K, Li JL (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 689:1160–1171. https://doi.org/10.1016/j.scitotenv.2019.06.405. (PMID: 10.1016/j.scitotenv.2019.06.40531466156) ; Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z (2022) The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113491. ; Umar Ijaz M, Batool M, Batool A, Al-Ghanimd KA, Zafar S, Ashraf A, Al-Misned F, Ahmed Z, Shahzadi S, Samad A, Atique U, Al-Mulhm N, Mahboob S (2021) Protective effects of vitexin on cadmium-induced renal toxicity in rats. Saudi J Biol Sci 28(10):5860–5864. https://doi.org/10.1016/j.sjbs.2021.06.040. (PMID: 10.1016/j.sjbs.2021.06.040345889018459060) ; Block G, Jensen CD, Morrow JD, Holland N, Norkus EP, Milne GL, Hudes M, Dalvi TB, Crawford PB, Fung EB, Schumacher L, Harmatz P (2008) The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic Biol Med 45(4):377–384. https://doi.org/10.1016/j.freeradbiomed.2008.04.005. (PMID: 10.1016/j.freeradbiomed.2008.04.005184555172750000) ; Huang X, Xiong G, Feng Y, Fan W, Yang S, Duan J, Duan Y, Wang K, Ou Y, Rehman T, Geng Y, Chen D, Yin L (2020) Protective effects of metallothionein and vitamin E in the trunk kidney and blood of cadmium poisoned Ctenopharyngodon idellus. Fish Physiol Biochem 46(3):1053–1061. https://doi.org/10.1007/s10695-020-00771-2. (PMID: 10.1007/s10695-020-00771-232016779) ; Huang J, Ma XT, Xu DD, Yao BJ, Zhao DQ, Leng XY, Liu J (2021) Xianling Gubao Capsule prevents cadmium-induced kidney injury. Biomed Res Int 2021:3931750. https://doi.org/10.1155/2021/3931750. (PMID: 10.1155/2021/3931750346218948492235) ; Dastan D, Karimi S, Larki-Harchegani A, Nili-Ahmadabadi A (2019) Protective effects of Allium hirtifolium Boiss extract on cadmium-induced renal failure in rats. Environ Sci Pollut Res Int 26(18):18886–18892. https://doi.org/10.1007/s11356-019-04656-7. (PMID: 10.1007/s11356-019-04656-731077048) ; Karami E, Goodarzi Z, Ghanbari A, Dehdashti A, Bandegi AR, Yosefi S (2022) Dataset on biochemical markers and histological alterations in rat kidney intoxicated with cadmium chloride and treated with antioxidant. Data Brief 43:108394. https://doi.org/10.1016/j.dib.2022.108394. (PMID: 10.1016/j.dib.2022.108394357899079249603) ; Handan BA, De Moura CFG, Cardoso CM, Santamarina AB, Pisani LP, Ribeiro DA (2020) Protective effect of grape and apple juices against cadmium intoxication in the kidney of rats. Drug Res (Stuttg) 70(11):503–511. https://doi.org/10.1055/a-1221-4733. (PMID: 10.1055/a-1221-473332820471) ; Wan X, Xing Z, Ouyang J, Liu H, Cheng C, Luo T, Yu S, Meihua L, Huang S (2022) Histomorphological and ultrastructural cadmium-induced kidney injuries and precancerous lesions in rats and screening for biomarkers. Biosci Rep 42(6). https://doi.org/10.1042/BSR20212516. ; Cho MR, Kang HG, Jeong SH, Cho MH (2010) Time-dependent changes of cadmium and metallothionein after short-term exposure to cadmium in rats. Toxicol Res 26(2):131–136. https://doi.org/10.5487/TR.2010.26.2.131. (PMID: 10.5487/TR.2010.26.2.131242785163834471) ; Chen S, Liu G, Long M, Zou H, Cui H (2018) Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 184:19–26. https://doi.org/10.1016/j.jinorgbio.2018.04.001. (PMID: 10.1016/j.jinorgbio.2018.04.00129654931) ; Trinchella F, Esposito MG, Scudiero R (2012) Metallothionein primary structure in amphibians: insights from comparative evolutionary analysis in vertebrates. C R Biol 335(7):480–487. https://doi.org/10.1016/j.crvi.2012.05.003. (PMID: 10.1016/j.crvi.2012.05.00322847015) ; Atukeren P, Aydin S, Uslu E, Gumustas MK, Cakatay U (2010) Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxid Med Cell Longev 3(3):206–213. https://doi.org/10.4161/oxim.3.3.11786. (PMID: 10.4161/oxim.3.3.11786207169452952079) ; Lobato RO, Nunes SM, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2013) The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comp Biochem Physiol A Mol Integr Physiol 165(4):491–497. https://doi.org/10.1016/j.cbpa.2013.03.015. (PMID: 10.1016/j.cbpa.2013.03.01523507566) ; Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763. (PMID: 10.1155/2017/8416763288195465551541) ; Macias-Barragan J, Huerta-Olvera SG, Hernandez-Canaveral I, Pereira-Suarez AL, Montoya-Buelna M (2017) Cadmium and alpha-lipoic acid activate similar de novo synthesis and recycling pathways for glutathione balance. Environ Toxicol Pharmacol 52:38–46. https://doi.org/10.1016/j.etap.2017.03.007. (PMID: 10.1016/j.etap.2017.03.00728366867) ; Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021. (PMID: 10.1016/j.ab.2016.10.02127789233) ; Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16(1):1–37. https://doi.org/10.1016/0300-483x(80)90107-9. (PMID: 10.1016/0300-483x(80)90107-96250252) ; Xu L, Hiller S, Simington S, Nickeleit V, Maeda N, James LR, Yi X (2016) Influence of different levels of lipoic acid synthase gene expression on diabetic nephropathy. PLoS ONE 11(10):e0163208. https://doi.org/10.1371/journal.pone.0163208. (PMID: 10.1371/journal.pone.0163208277061905051822) ; Fan SR, Ren TT, Yun MY, Lan R, Qin XY (2021) Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicol 86:1–9. https://doi.org/10.1016/j.neuro.2021.06.003. (PMID: 10.1016/j.neuro.2021.06.003) ; Ren TT, Yang JY, Wang J, Fan SR, Lan R, Qin XY (2021) Gisenoside Rg1 attenuates cadmium-induced neurotoxicity in vitro and in vivo by attenuating oxidative stress and inflammation. Inflamm Res 70(10–12):1151–1164. https://doi.org/10.1007/s00011-021-01513-7. (PMID: 10.1007/s00011-021-01513-734661679) ; Kamt SF, Liu J, Yan LJ (2023) Renal-protective roles of lipoic acid in kidney disease. Nutrients 15(7). https://doi.org/10.3390/nu15071732.
  • Grant Information: 222300420516 Nature Science Foundation of Henan Provincial; 81703183 National Natural Science Foundation of China; S202110472029 Innovation and Entrepreneurship Training Project for University Students of Henan Province; YJSCX202281Y Innovation and Entrepreneurship Training Project for University Students of Henan Province; 222102320325 Science and Technology Research Project of Henan Provincial; 232102311089 Science and Technology Research Project of Henan Provincial
  • Contributed Indexing: Keywords: Lias; Cd; Endogenous antioxidant capacity; Kidney injury; Oxidative stress
  • Substance Nomenclature: 00BH33GNGH (Cadmium)
  • Entry Date(s): Date Created: 20231007 Date Completed: 20240426 Latest Revision: 20240426
  • Update Code: 20240427

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -