Zum Hauptinhalt springen

Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis).

Blackburn, G ; Ashton, BJ ; et al.
In: Global change biology, Jg. 29 (2023-12-01), Heft 24, S. 6912-6930
Online academicJournal

Titel:
Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis).
Autor/in / Beteiligte Person: Blackburn, G ; Ashton, BJ ; Thornton, A ; Woodiss-Field, S ; Ridley, AR
Link:
Zeitschrift: Global change biology, Jg. 29 (2023-12-01), Heft 24, S. 6912-6930
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2023
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.16975
Schlagwort:
  • Humans
  • Animals
  • Australia
  • Noise adverse effects
  • Animals, Wild
  • Cognition
  • Ecosystem
  • Passeriformes
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2023 Dec; Vol. 29 (24), pp. 6912-6930. <i>Date of Electronic Publication: </i>2023 Oct 17.
  • MeSH Terms: Ecosystem* ; Passeriformes* ; Humans ; Animals ; Australia ; Noise / adverse effects ; Animals, Wild ; Cognition
  • References: Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3), 227-267. https://doi.org/10.1163/156853974x00534. ; Antze, B., & Koper, N. (2018). Noisy anthropogenic infrastructure interferes with alarm responses in Savannah sparrows (Passerculus sandwichensis). Royal Society Open Science, 5(5), 172168. https://doi.org/10.1098/rsos.172168. ; Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554(7692), 364-367. https://doi.org/10.1038/nature25503. ; Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01. ; Blackburn, G., Ashton, B. J., Thornton, A., Woodiss-Field, S., & Ridley, A. R. (2023). Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis). Figshare. https://doi.org/10.6084/m9.figshare.22794314. ; Blackburn, G., Broom, E., Ashton, B. J., Thornton, A., & Ridley, A. R. (2022). Heat stress inhibits cognitive performance in wild Western Australian magpies, Cracticus tibicen dorsalis. Animal Behaviour, 188, 1-11. https://doi.org/10.1016/j.anbehav.2022.03.016. ; Blackburn, G., Ridley, A. R., & Dutour, M. (2022). Australian magpies discriminate between the territorial calls of intra- and extra-group conspecifics. Ibis, 165, 1016-1021. https://doi.org/10.1111/ibi.13151. ; Blickley, J. L., Blackwood, D., & Patricelli, G. L. (2012). Experimental evidence for the effects of chronic anthropogenic noise on abundance of greater sage-grouse at leks. Conservation Biology, 26(3), 461-471. https://doi.org/10.1111/j.1523-1739.2012.01840.x. ; Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Oxford University Press. ; Bruintjes, R., & Radford, A. N. (2013). Context-dependent impacts of anthropogenic noise on individual and social behaviour in a cooperatively breeding fish. Animal Behaviour, 85(6), 1343-1349. https://doi.org/10.1016/j.anbehav.2013.03.025. ; Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer. ; Cheng, L., Wang, S.-H., Chen, Q.-C., & Liao, X.-M. (2011). Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiology & Behavior, 104(5), 981-988. https://doi.org/10.1016/j.physbeh.2011.06.018. ; Conomy, J. T., Dubovsky, J. A., Collazo, J. A., & Fleming, W. J. (1998). Do black ducks and wood ducks habituate to aircraft disturbance. Journal of Wildlife Management, 62, 1135-1142. ; Cresswell, W. (2008). Non-lethal effects of predation in birds. Ibis, 150(1), 3-17. https://doi.org/10.1111/j.1474-919X.2007.00793.x. ; Dooling, R. J., & Blumenrath, S. H. (2013). Avian sound perception in noise. In H. Brumm (Ed.), Animal communication and noise (Vol. 2, pp. 229-250). Springer. https://doi.org/10.1007/978-3-642-41494-7_8. ; Dukas, R., & Clark, C. W. (1995). Sustained vigilance and animal performance. Animal Behaviour, 49(5), 1259-1267. https://doi.org/10.1006/anbe.1995.0158. ; Dukas, R., & Ellner, S. (1993). Information processing and prey detection. Ecology, 74(5), 1337-1346. https://doi.org/10.2307/1940064. ; Dutour, M., Kasper, J., & Ridley, A. R. (2021). Transfer of information between a highly social species and heterospecific community members. Behavioral Ecology and Sociobiology, 75(10), 137. https://doi.org/10.1007/s00265-021-03075-4. ; Dutour, M., & Ridley, A. R. (2020). Females sing more often and at higher frequencies than males in Australian magpies. Behavioural Processes, 172, 104045. https://doi.org/10.1016/j.beproc.2020.104045. ; Dutour, M., Walsh, S. L., & Ridley, A. R. (2020). Australian magpies adjust their alarm calls according to predator distance. Bioacoustics, 30, 1-11. https://doi.org/10.1080/09524622.2020.1808069. ; Eastcott, E., Kern, J. M., Morris-Drake, A., & Radford, A. N. (2020). Intrapopulation variation in the behavioral responses of dwarf mongooses to anthropogenic noise. Behavioral Ecology, 31(3), 680-691. https://doi.org/10.1093/beheco/araa011. ; Edwards, E. K., Mitchell, N. J., & Ridley, A. R. (2015). The impact of high temperatures on foraging behaviour and body condition in the Western Australian magpie Cracticus tibicen dorsalis. Ostrich, 86(1-2), 137-144. https://doi.org/10.2989/00306525.2015.1034219. ; Evans, J. C., Dall, S. R. X., & Kight, C. R. (2018). Effects of ambient noise on zebra finch vigilance and foraging efficiency. PLoS One, 13(12), e0209471. https://doi.org/10.1371/journal.pone.0209471. ; Floyd, R. B., & Woodland, D. J. (1981). Localization of soil dwelling scarab larvae by the black-backed magpie, Gymnorhina tibicen (Latham). Animal Behaviour, 29(2), 510-517. ; Franz, M., & Goller, F. (2003). Respiratory patterns and oxygen consumption in singing zebra finches. Journal of Experimental Biology, 206(Pt 6), 967-978. https://doi.org/10.1242/jeb.00196. ; Freas, C. A., LaDage, L. D., Roth, T. C., & Pravosudov, V. V. (2012). Elevation-related differences in memory and the hippocampus in mountain chickadees, Poecile gambeli. Animal Behaviour, 84(1), 121-127. https://doi.org/10.1016/j.anbehav.2012.04.018. ; Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E., & Brashares, J. S. (2019). Landscapes of fear: Spatial patterns of risk perception and response. Trends in Ecology & Evolution, 34(4), 355-368. https://doi.org/10.1016/j.tree.2019.01.004. ; Goldbogen, J. A., Southall, B. L., DeRuiter, S. L., Calambokidis, J., Friedlaender, A. S., Hazen, E. L., Falcone, E. A., Schorr, G. S., Douglas, A., Moretti, D. J., Kyburg, C., McKenna, M. F., & Tyack, P. L. (2013). Blue whales respond to simulated mid-frequency military sonar. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20130657. https://doi.org/10.1098/rspb.2013.0657. ; Goodwin, S. E., & Shriver, W. G. (2011). Effects of traffic noise on occupancy patterns of forest birds. Conservation Biology, 25(2), 406-411. https://doi.org/10.1111/j.1523-1739.2010.01602.x. ; Grade, A. M., & Sieving, K. E. (2016). When the birds go unheard: Highway noise disrupts information transfer between bird species. Biology Letters, 12(4), 20160113. https://doi.org/10.1098/rsbl.2016.0113. ; Griffin, A. S., Tebbich, S., & Bugnyar, T. (2017). Animal cognition in a human-dominated world. Animal Cognition, 20(1), 1-6. https://doi.org/10.1007/s10071-016-1051-9. ; Grunst, A. S., Grunst, M. L., Raap, T., Pinxten, R., & Eens, M. (2023). Anthropogenic noise and light pollution additively affect sleep behaviour in free-living birds in sex- and season-dependent fashions. Environmental Pollution, 316(Pt 1), 120426. https://doi.org/10.1016/j.envpol.2022.120426. ; Grunst, M. L., Grunst, A. S., Pinxten, R., & Eens, M. (2021). Little parental response to anthropogenic noise in an urban songbird, but evidence for individual differences in sensitivity. The Science of the Total Environment, 769, 144554. https://doi.org/10.1016/j.scitotenv.2020.144554. ; Halfwerk, W., Lea, A. M., Guerra, M. A., Page, R. A., & Ryan, M. J. (2016). Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology, 27(2), 669-676. https://doi.org/10.1093/beheco/arv204. ; Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78(6), 1301-1307. https://doi.org/10.1016/j.anbehav.2009.09.015. ; Harding, H. R., Gordon, T. A. C., Eastcott, E., Simpson, S. D., & Radford, A. N. (2019). Causes and consequences of intraspecific variation in animal responses to anthropogenic noise. Behavioral Ecology, 30(6), 1501-1511. https://doi.org/10.1093/beheco/arz114. ; Harding, H. R., Gordon, T. A. C., Wong, K., McCormick, M. I., Simpson, S. D., & Radford, A. N. (2020). Condition-dependent responses of fish to motorboats. Biology Letters, 16(11), 20200401. https://doi.org/10.1098/rsbl.2020.0401. ; Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794. ; Hastie, G. D., Lepper, P., McKnight, J. C., Milne, R., Russell, D. J. F., & Thompson, D. (2021). Acoustic risk balancing by marine mammals: Anthropogenic noise can influence the foraging decisions by seals. Journal of Applied Ecology, 58(9), 1854-1863. https://doi.org/10.1111/1365-2664.13931. ; Johnstone, R. (2004). Handbook of Western Australian birds. Western Australian Museum. ; Kern, J. M., & Radford, A. N. (2016). Anthropogenic noise disrupts use of vocal information about predation risk. Environmental Pollution, 218, 988-995. https://doi.org/10.1016/j.envpol.2016.08.049. ; Kroodsma, D. E., Byers, B. E., Goodale, E., Johnson, S., & Liu, W. C. (2001). Pseudoreplication in playback experiments, revisited a decade later. Animal Behaviour, 61(5), 1029-1033. https://doi.org/10.1006/anbe.2000.1676. ; Kunc, H. P., & Schmidt, R. (2019). The effects of anthropogenic noise on animals: A meta-analysis. Biology Letters, 15(11), 20190649. https://doi.org/10.1098/rsbl.2019.0649. ; Kunc, H. P., & Schmidt, R. (2021). Species sensitivities to a global pollutant: A meta-analysis on acoustic signals in response to anthropogenic noise. Global Change Biology, 27(3), 675-688. https://doi.org/10.1111/gcb.15428. ; Laundré, J. W., Hernández, L., & Altendorf, K. B. (2001). Wolves, elk, and bison: Reestablishing the “landscape of fear” in Yellowstone National Park, USA. Canadian Journal of Zoology, 79(8), 1401-1409. https://doi.org/10.1139/cjz-79-8-1401. ; Lee, V. E., & Thornton, A. (2021). Animal cognition in an urbanised world. Frontiers in Ecology and Evolution, 9, 633947. https://doi.org/10.3389/fevo.2021.633947. ; Lengagne, T. (2008). Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biological Conservation, 141(8), 2023-2031. https://doi.org/10.1016/j.biocon.2008.05.017. ; Lenth, R. V. (2019). Emmeans: Estimates marginal means, aka least-squares means. (R package version 1.4.3.01) [Computer software]. ; Lowry, H., Lill, A., & Wong, B. B. M. (2012). How noisy does a noisy miner have to be? Amplitude adjustments of alarm calls in an avian urban “adapter”. PLoS One, 7(1), e29960. https://doi.org/10.1371/journal.pone.0029960. ; Luo, J., Siemers, B. M., & Koselj, K. (2015). How anthropogenic noise affects foraging. Global Change Biology, 21(9), 3278-3289. https://doi.org/10.1111/gcb.12997. ; Mancera, K. F., Lisle, A., Allavena, R., & Phillips, C. J. C. (2017). The effects of mining machinery noise of different frequencies on the behaviour, faecal corticosterone and tissue morphology of wild mice (Mus musculus). Applied Animal Behaviour Science, 197, 81-89. https://doi.org/10.1016/j.applanim.2017.08.008. ; McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G., & Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proceedings. Biological Sciences/the Royal Society, 280(1773), 20132290. https://doi.org/10.1098/rspb.2013.2290. ; McClure, C. J. W., Ware, H. E., Carlisle, J. D., & Barber, J. R. (2017). Noise from a phantom road experiment alters the age structure of a community of migrating birds. Animal Conservation, 20(2), 164-172. https://doi.org/10.1111/acv.12302. ; McCormick, M. I., Watson, S.-A., Simpson, S. D., & Allan, B. J. M. (2018). Effect of elevated CO2 and small boat noise on the kinematics of predator-prey interactions. Proceedings of the Royal Society B: Biological Sciences, 285(1875), 1-8. https://doi.org/10.1098/rspb.2017.2650. ; Meillere, A., Brischoux, F., & Angelier, F. (2015). Impact of chronic noise exposure on antipredator behavior: An experiment in breeding house sparrows. Behavioral Ecology, 26(2), 569-577. https://doi.org/10.1093/beheco/aru232. ; Melcón, M. L., Cummins, A. J., Kerosky, S. M., Roche, L. K., Wiggins, S. M., & Hildebrand, J. A. (2012). Blue whales respond to anthropogenic noise. PLoS One, 7(2), e32681. https://doi.org/10.1371/journal.pone.0032681. ; Miller, P. J., Biassoni, N., Samuels, A., & Tyack, P. L. (2000). Whale songs lengthen in response to sonar. Nature, 405(6789), 903. https://doi.org/10.1038/35016148. ; Montgomerie, R., & Weatherhead, P. J. (1997). How robins find worms. Animal Behaviour, 54(1), 143-151. https://doi.org/10.1006/anbe.1996.0411. ; Morris-Drake, A., Bracken, A. M., Kern, J. M., & Radford, A. N. (2017). Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls. Environmental Pollution, 223, 476-483. https://doi.org/10.1016/j.envpol.2017.01.049. ; Nemeth, E., & Brumm, H. (2009). Blackbirds sing higher-pitched songs in cities: Adaptation to habitat acoustics or side-effect of urbanization? Animal Behaviour, 78(3), 637-641. https://doi.org/10.1016/j.anbehav.2009.06.016. ; Neo, Y. Y., Hubert, J., Bolle, L. J., Winter, H. V., & Slabbekoorn, H. (2018). European seabass respond more strongly to noise exposure at night and habituate over repeated trials of sound exposure. Environmental Pollution, 239, 367-374. https://doi.org/10.1016/j.envpol.2018.04.018. ; Osbrink, A., Meatte, M. A., Tran, A., Herranen, K. K., Meek, L., Murakami-Smith, M., Ito, J., Bhadra, S., Nunnenkamp, C., & Templeton, C. N. (2021). Traffic noise inhibits cognitive performance in a songbird. Proceedings of the Royal Society B: Biological Sciences, 288(1944), 20202851. https://doi.org/10.1098/rspb.2020.2851. ; Pandit, M. M., Eapen, J., Pineda-Sabillon, G., Caulfield, M. E., Moreno, A., Wilhelm, J., Ruyle, J. E., Bridge, E. S., & Proppe, D. S. (2021). Anthropogenic noise alters parental behavior and nestling developmental patterns, but not fledging condition. Behavioral Ecology, 32(4), 747-755. https://doi.org/10.1093/beheco/arab015. ; Pearson, T., & Clarke, J. A. (2018). Urban noise and grey-headed flying-fox vocalisations: Evidence of the silentium effect. Urban Ecosystems, 22(2), 1-10. https://doi.org/10.1007/s11252-018-0814-2. ; Pike, K. N., Ashton, B. J., Morgan, K. V., & Ridley, A. R. (2019). Social and individual factors influence variation in offspring care in the cooperatively breeding western Australian magpie. Frontiers in Ecology and Evolution, 7, 201900092. https://doi.org/10.3389/fevo.2019.00092. ; Potvin, D. A. (2017). Coping with a changing soundscape: Avoidance, adjustments and adaptations. Animal Cognition, 20(1), 9-18. https://doi.org/10.1007/s10071-016-0999-9. ; Powolny, T., Bretagnolle, V., Aguilar, A., & Eraud, C. (2014). Sex-related differences in the trade-off between foraging and vigilance in a granivorous forager. PLoS One, 9(7), e101598. https://doi.org/10.1371/journal.pone.0101598. ; Proppe, D. S., Sturdy, C. B., & St Clair, C. C. (2011). Flexibility in animal signals facilitates adaptation to rapidly changing environments. PLoS One, 6(9), e25413. https://doi.org/10.1371/journal.pone.0025413. ; Purser, J., Bruintjes, R., Simpson, S. D., & Radford, A. N. (2016). Condition-dependent physiological and behavioural responses to anthropogenic noise. Physiology & Behavior, 155, 157-161. https://doi.org/10.1016/j.physbeh.2015.12.010. ; Purser, J., & Radford, A. N. (2011). Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS One, 6(2), e17478. https://doi.org/10.1371/journal.pone.0017478. ; Quinn, J. L., Whittingham, M. J., Butler, S. J., & Cresswell, W. (2006). Noise, predation risk compensation and vigilance in the chaffinch Fringilla coelebs. Journal of Avian Biology, 37(6), 601-608. https://doi.org/10.1111/j.2006.0908-8857.03781.x. ; RStudio Team. (2022). R: A language and environment for statistical computing (4.2.0). [Computer software]. ; Schroeder, J., Nakagawa, S., Cleasby, I. R., & Burke, T. (2012). Passerine birds breeding under chronic noise experience reduced fitness. PLoS One, 7(7), e39200. https://doi.org/10.1371/journal.pone.0039200. ; Sementili-Cardoso, G., & Donatelli, R. J. (2021). Anthropogenic noise and atmospheric absorption of sound induce amplitude shifts in the songs of Southern House Wren (Troglodytes aedon musculus). Urban Ecosystems, 24(5), 1001-1009. https://doi.org/10.1007/s11252-021-01092-9. ; Senzaki, M., Yamaura, Y., Francis, C. D., & Nakamura, F. (2016). Traffic noise reduces foraging efficiency in wild owls. Scientific Reports, 6, 30602. https://doi.org/10.1038/srep30602. ; Sewall, K. B., Soha, J. A., Peters, S., & Nowicki, S. (2013). Potential trade-off between vocal ornamentation and spatial ability in a songbird. Biology Letters, 9(4), 20130344. https://doi.org/10.1098/rsbl.2013.0344. ; Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, C., Briggs, J., McFarland, S., & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews of the Cambridge Philosophical Society, 91(4), 982-1005. https://doi.org/10.1111/brv.12207. ; Shaw, R. C., Boogert, N. J., Clayton, N. S., & Burns, K. C. (2015). Wild psychometrics: Evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Animal Behaviour, 109, 101-111. https://doi.org/10.1016/j.anbehav.2015.08.001. ; Shettleworth, S. J. (1998). Cognition, evolution, and behavior (1st ed.). Oxford University Press. ; Siemers, B. M., & Schaub, A. (2011). Hunting at the highway: Traffic noise reduces foraging efficiency in acoustic predators. Proceedings of the Royal Society B: Biological Sciences, 278(1712), 1646-1652. https://doi.org/10.1098/rspb.2010.2262. ; Simpson, S. D., Purser, J., & Radford, A. N. (2015). Anthropogenic noise compromises antipredator behaviour in European eels. Global Change Biology, 21(2), 586-593. https://doi.org/10.1111/gcb.12685. ; Slabbekoorn, H., & den Boer-Visser, A. (2006). Cities change the songs of birds. Current Biology, 16(23), 2326-2331. https://doi.org/10.1016/j.cub.2006.10.008. ; Sol, D., Lapiedra, O., & Ducatez, S. (2020). Cognition and adaptation to urban environments. In M. Szulkin, J. Munshi-South, & A. Charmantier (Eds.), Urban evolutionary biology (pp. 253-267). Oxford University Press Oxford. https://doi.org/10.1093/oso/9780198836841.003.0015. ; Szabo, B., Damas-Moreira, I., & Whiting, M. J. (2020). Can cognitive ability give invasive species the means to succeed? A review of the evidence. Frontiers in Ecology and Evolution, 8, 187. https://doi.org/10.3389/fevo.2020.00187. ; Templeton, C. N., Zollinger, S. A., & Brumm, H. (2016). Traffic noise drowns out great tit alarm calls. Current Biology, 26(22), R1173-R1174. https://doi.org/10.1016/j.cub.2016.09.058. ; Triki, Z., Wismer, S., Levorato, E., & Bshary, R. (2018). A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24(1), 481-489. https://doi.org/10.1111/gcb.13943. ; Willems, J. S., Phillips, J. N., & Francis, C. D. (2022). Artificial light at night and anthropogenic noise alter the foraging activity and structure of vertebrate communities. The Science of the Total Environment, 805, 150223. https://doi.org/10.1016/j.scitotenv.2021.150223. ; Wilson, A. A., Ditmer, M. A., Barber, J. R., Carter, N. H., Miller, E. T., Tyrrell, L. P., & Francis, C. D. (2021). Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Global Change Biology, 27(17), 3987-4004. https://doi.org/10.1111/gcb.15663. ; Wollerman, L., & Wiley, R. H. (2002). Background noise from a natural chorus alters female discrimination of male calls in a neotropical frog. Animal Behaviour, 63(1), 15-22. https://doi.org/10.1006/anbe.2001.1885. ; World Health Organization. Regional Office for Europe. (2011). Burden of disease from environmental noise: Quantification of healthy life years lost in Europe (pp. xvii, 106 p.). World Health Organization. Regional Office for Europe. ; Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators (Vol. 16, pp. 229-249). Elsevier. https://doi.org/10.1016/S0065-3454(08)60192-8. ; Zhou, Y., Radford, A. N., & Magrath, R. D. (2019). Why does noise reduce response to alarm calls? Experimental assessment of masking, distraction and greater vigilance in wild birds. Functional Ecology, 33(7), 1280-1289. https://doi.org/10.1111/1365-2435.13333.
  • Grant Information: Ada Jackson Irwin Street Commemoration Award; Australian Government Research Training Program; Holsworth Wildlife Research Endowment
  • Contributed Indexing: Keywords: anthropogenic noise; behaviour; bird; cognition; individual variation; urbanisation
  • Entry Date(s): Date Created: 20231017 Date Completed: 20231115 Latest Revision: 20231122
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -