Zum Hauptinhalt springen

Revealing the hidden burden for lake management: the sediment phosphorus storage pools in Eastern Plain Lake Zone, China.

Zhang, C ; Zhao, Y ; et al.
In: Environmental science and pollution research international, Jg. 30 (2023-11-01), Heft 54, S. 116052-116065
Online academicJournal

Titel:
Revealing the hidden burden for lake management: the sediment phosphorus storage pools in Eastern Plain Lake Zone, China.
Autor/in / Beteiligte Person: Zhang, C ; Zhao, Y ; Xu, M ; Zheng, W ; Qin, B ; Wang, R
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 30 (2023-11-01), Heft 54, S. 116052-116065
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2023
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-023-30555-z
Schlagwort:
  • Environmental Monitoring
  • Ecosystem
  • Geologic Sediments
  • China
  • Eutrophication
  • Water
  • Phosphorus analysis
  • Water Pollutants, Chemical analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2023 Nov; Vol. 30 (54), pp. 116052-116065. <i>Date of Electronic Publication: </i>2023 Oct 31.
  • MeSH Terms: Phosphorus* / analysis ; Water Pollutants, Chemical* / analysis ; Environmental Monitoring ; Ecosystem ; Geologic Sediments ; China ; Eutrophication ; Water
  • References: Baum SD, Handoh IC (2014) Integrating the planetary boundaries and global catastrophic risk paradigms. Ecol Econ 107:13–21. https://doi.org/10.1016/j.ecolecon.2014.07.024. (PMID: 10.1016/j.ecolecon.2014.07.024) ; Beusen AHW, Doelman JC, Van Beek LPH, Van Puijenbroek PJTM, Mogollon JM, Van Grinsven HJM, Stehfest E, Van Vuuren DP, Bouwman AF (2022) Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environ Chang 72:102426. https://doi.org/10.1016/j.gloenvcha.2021.102426. (PMID: 10.1016/j.gloenvcha.2021.102426) ; Bocaniov SA, Scavia D, Van Cappellen P (2023) Long-term phosphorus mass-balance of Lake Erie (Canada-USA) reveals a major contribution of in-lake phosphorus loading. Ecol Inform 102131. https://doi.org/10.1016/j.ecoinf.2023.102131. ; Boeykens SP, Natalia PM, Samudio LL, Saralegui AB, Vázquez C (2017) Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. J Environ Manag 203:888–895. https://doi.org/10.1016/j.jenvman.2017.05.026. (PMID: 10.1016/j.jenvman.2017.05.026) ; Chen X, Li H, Hou J, Cao XY, Song C, Zhou Y (2016) Sediment-water interaction in phosphorus cycling as affected by trophic states in a Chinese shallow lake (Lake Donghu). Hydrobiologia 776(1):19–33. https://doi.org/10.1007/s10750-016-2811-x. (PMID: 10.1007/s10750-016-2811-x) ; Chen Y, Lin Q, Liu EF, Zhang EL, Wang X, Shen J (2021) Spatio-temporal variations of sedimentary phosphorus in Lugu Lake and its environmental implications. Quaternary Sci 41(4):1206–1215. https://doi.org/10.11928/j.issn.1001-7410.2021.04.26 . (in Chinese). (PMID: 10.11928/j.issn.1001-7410.2021.04.26) ; Chen Y, Chen J, Xia R, Li WP, Zhang Y, Zhang K, Tong SL, Jia RN, Hu Q, Wang L, Zhang XJ (2023a) Phosphorus-The main limiting factor in riverine ecosystems in China. Sci Total Environ 870:161613. https://doi.org/10.1016/j.scitotenv.2023.161613. (PMID: 10.1016/j.scitotenv.2023.161613) ; Chen Y, Jia JP, Wu CC, Ramirez-Granada L, Li G (2023b) Estimation on total phosphorus of agriculture soil in China: a new sight with comparison of model learning methods. J Soils Sediments 23(2):998–1007. https://doi.org/10.1007/s11368-022-03374-x. (PMID: 10.1007/s11368-022-03374-x) ; Cheng P, Zhang WS (2019) Spatio-temporal variation characteristics and division analysis of provincial net anthropogenic phosphorus input in mainland China in recent twenty years. Ecol Environ Sci 28(3):540–547. https://doi.org/10.16258/j.cnki.1674-5906.2019.03.014 . (in Chinese). (PMID: 10.16258/j.cnki.1674-5906.2019.03.014) ; Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) ECOLOGY Controlling eutrophication, Nitrogen and Phosphorus. Science 323(5917):1014–1015. https://doi.org/10.1126/science.1167755. (PMID: 10.1126/science.1167755) ; Dantas DDF, Rubim PL, de Oliveira FA, da Costa MRA, de Moura CGB, Teixeira LH, Attayde JL (2019) Effects of benthivorous and planktivorous fish on phosphorus cycling, phytoplankton biomass and water transparency of a tropical shallow lake. Hydrobiologia 829:31–41. https://doi.org/10.1007/s10750-018-3613-0. (PMID: 10.1007/s10750-018-3613-0) ; Deng CN, Liu LS, Pen DZ, Li HS, Zhao ZY, Lyu CJ, Zhang ZQ (2021) Net anthropogenic nitrogen and phosphorus inputs in the Yangtze River economic belt: spatiotemporal dynamics, attribution analysis, and diversity management. J Hydrol 597:126221. https://doi.org/10.1016/j.jhydrol.2021.126221. (PMID: 10.1016/j.jhydrol.2021.126221) ; Dong L, Lin L, Tang XQ, Huang Z, Zhao LY, Wu M, Li R (2020) Distribution characteristics and spatial differences of phosphorus in the main stream of the urban river stretches of the middle and lower reaches of the Yangtze River. Water 12(3):910. https://doi.org/10.3390/w12030910. (PMID: 10.3390/w12030910) ; Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Strieg RGI, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburget JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388. (PMID: 10.4319/lo.2006.51.5.2388) ; Fan ZY, Wang WC, Jiang JG, Ma JY, Wang Z, Zeng FT (2020) Risk and control strategy of internal phosphorus release from sediments in Huayang Lakes. Res Environ Sci 33(5):1170–1178. https://doi.org/j.issn.1001-6929.2020.04.22 . (in Chinese). ; Fink G, Alcamo J, Flörke M, Reder K (2018) Phosphorus loadings to the world’s largest lakes: sources and trends. Glob Biogeochem Cycles 32(4):617–634. https://doi.org/10.1002/2017GB005858. (PMID: 10.1002/2017GB005858) ; Gao C, Zhang TL, Wu WD (2001) Risk evaluation of agricultural soil phosphorus release to the water bodies. Acta Scientiae Circumstantiae 21(3):344–348. https://doi.org/10.13671/j.hjkxxb.2001.03.018 . (in Chinese). (PMID: 10.13671/j.hjkxxb.2001.03.018) ; Hambright KD, Eckert W, Leavitt PR, Schelske CL (2004) Effects of historical lake level and land use on sediment and phosphorus accumulation rates in Lake Kinneret. Environ Sci Technol 38(24):6460–6467. https://doi.org/10.1021/es0492992. (PMID: 10.1021/es0492992) ; He XJ, Augusto L, Goll DS, Ringeval B, Wang YP, Helfenstein J, Huang YY, Yu KL, Wang ZQ, Yang YC, Hou EQ (2021) Global patterns and drivers of soil total phosphorus concentration. Earth Syst Sci Data 13(12):5831–5846. https://doi.org/10.5194/essd-13-5831-2021. (PMID: 10.5194/essd-13-5831-2021) ; Heathwaite L, Sharpley A (1999) Evaluating measures to control the impact of agricultural phosphorus on water quality. Water Sci Technol 39(12):149–155. https://doi.org/10.1016/s0273-1223(99)00330-3. (PMID: 10.1016/s0273-1223(99)00330-3) ; Huang WH, Wang YF, Gao HG, Zhou CZ (2022) Spatial effect measurement of inter-provincial competition for water pollution control in the Yangtze River Basin. Stat Decis 2022 38(12):64–69. https://doi.org/10.13546/j.cnki.tjyjc.2022.12.012 . (in Chinese). (PMID: 10.13546/j.cnki.tjyjc.2022.12.012) ; Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. Int Rev Hydrobiol 93(4–5):415–432. https://doi.org/10.1002/iroh.200711054. (PMID: 10.1002/iroh.200711054) ; Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJA (2013) Water quality remediation faces unprecedented challenges from “legacy phosphorus.” Environ Sci Technol 47(16):8997–8998. https://doi.org/10.1021/es403160a. (PMID: 10.1021/es403160a) ; Jin GZ, Onodera S, Saito M, Shimizu Y (2020) Sediment phosphorus cycling in a nutrient-rich embayment in relation to sediment phosphorus pool and release. Limnology 21(3):415–425. https://doi.org/10.1007/s10201-020-00627-x. (PMID: 10.1007/s10201-020-00627-x) ; Kastowski M, Hinderer M, Vecsei A (2011) Long-term carbon burial in European lakes: Analysis and estimate. Glob Biogeochem Cycles 25(3):GB3019. https://doi.org/10.1029/2010gb003874. (PMID: 10.1029/2010gb003874) ; Kowalczewska-Madura K, Goldyn R, Dondajewska R (2010) The bottom sediments of Lake Uzarzewskie-a phosphorus source or sink? Oceanol Hydrobiol Stud 39(3):81–91. https://doi.org/10.2478/v10009-010-0042-4. (PMID: 10.2478/v10009-010-0042-4) ; Kowalczewska-Madura K, Dondajewska R, Gołdyn R, Podsiadłowski S (2017) The influence of restoration measures on phosphorus internal loading from the sediments of a hypereutrophic lake. Environ Sci Pollut Res 24:14417–14429. https://doi.org/10.1007/s11356-017-8997-2. (PMID: 10.1007/s11356-017-8997-2) ; Le C, Zha Y, Li Y, Sun D, Lu H, Yin B (2010) Eutrophication of lake waters in China: Cost, causes, and control. Environ Manag 45(4):662–668. https://doi.org/10.1007/s00267-010-9440-3. (PMID: 10.1007/s00267-010-9440-3) ; Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028. (PMID: 10.1016/j.jhydrol.2004.03.028) ; Li Y, Wang LG, Chao CX, Yu HW, Yu D, Liu CH (2021) Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. Environ Pollut 268:115949. https://doi.org/10.1016/j.envpol.2020.115949. (PMID: 10.1016/j.envpol.2020.115949) ; Li XJ, Xu XG, Zhao YP, Han RM, Wang GX (2022) Effects of algae and hydrophytes on the inorganic phosphorus pool of shallow hypereutrophic Lake Taihu. Water Supply 22(1):181–194. https://doi.org/10.2166/ws.2021.276. (PMID: 10.2166/ws.2021.276) ; Lin JS, Shi XZ, Lu XX, Yu DS, Wang HJ, Zhao YC, Sun WX (2009) Storage and spatial variation of phosphorus in paddy soils of China. Pedosphere 19(6):790–798. https://doi.org/10.1016/s1002-0160(09)60174-0. (PMID: 10.1016/s1002-0160(09)60174-0) ; Liu Y, Chen JN, Mol APJ (2004) Evaluation of phosphorus flows in the Dianchi watershed, Southwest of China. Popul Environ 25(6):637–656. https://doi.org/10.1023/B:POEN.0000039068.58963.11. (PMID: 10.1023/B:POEN.0000039068.58963.11) ; Liu EF, Yang XD, Shen J, Dong XH, Zhang EL, Wang SM (2007) Environmental response to climate and human impact during the last 400 years in Taibai Lake catchment, middle reach of Yangtze River, China. Sci Total Environ 385(1–3):196–207. https://doi.org/10.1016/j.scitotenv.2007.06.041. (PMID: 10.1016/j.scitotenv.2007.06.041) ; Liu X, Sheng H, Jiang SY, Yuan ZW, Zhang CS, Elser JJ (2016) Intensification of phosphorus cycling in China since the 1600s. Proc Natl Acad Sci USA 113(10):2609–2614. https://doi.org/10.1073/pnas.1519554113. (PMID: 10.1073/pnas.1519554113) ; Liu LS, Huang GX, Wang P, Chu ZS, Li HS (2020) Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin. Res Environ Sci 5(33):1081–1088. https://doi.org/10.13198/j.issn.1001-6929.2020.04.30 . (in Chinese). (PMID: 10.13198/j.issn.1001-6929.2020.04.30) ; Liu DD, Bai L, Li XY, Zhang Y, Qiao Q, Lu ZB, Liu JY (2022) Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China. Resour Conserv Recy 176:105937. https://doi.org/10.1016/j.resconrec.2021.105937. (PMID: 10.1016/j.resconrec.2021.105937) ; Luo LC, Qin BQ, Zhu GW (2004) Sediment distribution and the maximum resuspension depth with disturbance in Lake Taihu. J Sediment Res 1:9–14. https://doi.org/10.16239/j.cnki.0468-155x.2004.01.002 . (in Chinese). (PMID: 10.16239/j.cnki.0468-155x.2004.01.002) ; Luo WG, Yue YY, Lu J, Pan LN, Zhu SL (2022) Sediment phosphate release flux under hydraulic disturbances in the shallow lake of Chaohu, China. Environ Sci Pollut Res 29(40):60843–60851. https://doi.org/10.1007/s11356-022-20102-7. (PMID: 10.1007/s11356-022-20102-7) ; Ma RH, Yang GS, Duan HT, Jiang JH, Wang SM, Feng XZ, Li AM, Kong FZ, Xue B, Wu JL, Li SJ (2011) China’s lakes at present: Number, area and spatial distribution. Sci China Earth Sci 54(2):283–289. https://doi.org/10.1007/s11430-010-4052-6. (PMID: 10.1007/s11430-010-4052-6) ; Ma LY, Qi X, Zhou SQ, Niu HF, Zhang TX (2023) Spatiotemporal distribution of phosphorus fractions and the potential release risks in sediments in a Yangtze River connected lake, new insights into the influence of water-level fluctuation. J Soils Sediments 23(1):496–511. https://doi.org/10.1007/s11368-022-03392-9. (PMID: 10.1007/s11368-022-03392-9) ; MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31. https://doi.org/10.1007/s002440010075. (PMID: 10.1007/s002440010075) ; Malhotra H, Vandana, Sharma S, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance 171–190. https://doi.org/10.1007/978-981-10-9044-8_7. ; Mao QZ, Long Y, Wu K (2015) Spatial and temporal changes of population density and exploration on urbanization pattern in China: 2000 to 2010. City Plan Rev 39(02):38–43. https://doi.org/10.11819/cpr20150207a . (in Chinese). (PMID: 10.11819/cpr20150207a) ; Nanjing Institute of Geography and Limnology Chinese Academy of Sciences (2019) China Lake Survey Report. Science Press, Beijing, pp 14–672. (in Chinese). ; Ni ZK, Wang SR (2015) Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China. Environ Sci Pollut Res 22:18561–18573. https://doi.org/10.1007/s11356-015-5171-6. (PMID: 10.1007/s11356-015-5171-6) ; Noll MR, Szatkowski AE, Magee EA (2009) Phosphorus fractionation in soil and sediments along a continuum from agricultural fields to nearshore lake sediments: Potential ecological impacts. J Great Lakes Res 35:56–63. https://doi.org/10.1016/j.jglr.2008.08.004. (PMID: 10.1016/j.jglr.2008.08.004) ; Penuelas J, Sardans J (2022) The global nitrogen-phosphorus imbalance. Science 375(6578):266–267. https://doi.org/10.1126/science.abl4827. (PMID: 10.1126/science.abl4827) ; Persaud D, Jaagumagi R, Hayton A (1993) Guidelines for the protection and management of aquatic sediment quality in Ontario. Water Resources Branch, Ontario Ministry of Environment and Energy, Toronto, Canada. https://doi.org/10.1093/iclqaj/18.2.494. (PMID: 10.1093/iclqaj/18.2.494) ; Powers SM, Bruulsema TW, Burt TP, Chan NI, Elser JJ, Haygarth PM, Howden NJK, Jarvie HP, Lyu Y, Peterson HM, Sharpley AN, Shen J, Worrall F, Zhang F (2016) Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat Geosci 9(5):353–356. https://doi.org/10.1038/ngeo2693. (PMID: 10.1038/ngeo2693) ; Qin BQ, Zhang YL, Zhu GW, Gong ZJ, Deng JM, Hamilton DP, Gao G, Shi K, Zhou J, Shao KQ, Zhu MY, Zhou YQ, Tang XM, Li L (2020) Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? Proc Natl Acad Sci USA 117(35):21000–21002. https://doi.org/10.1073/pnas.2013445117. (PMID: 10.1073/pnas.2013445117) ; Rippey B, Campbell J, McElarney Y, Thompson J, Gallagher M (2021) Timescale of reduction of long-term phosphorus release from sediment in lakes. Water Res 200:117283. https://doi.org/10.1016/j.watres.2021.117283. (PMID: 10.1016/j.watres.2021.117283) ; Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42(5):1308–1326. https://doi.org/10.2134/jeq2013.03.0098. (PMID: 10.2134/jeq2013.03.0098) ; Shen JQ (2020) Estimation of soil phosphorus storage in the cropland of Fujian Province based on high-resolution soil database. Chin J Soil Sci 51(1):79–88. https://doi.org/10.19336/j.cnki.trtb.2020.01.11 . (in Chinese). (PMID: 10.19336/j.cnki.trtb.2020.01.11) ; Stoddard JL, Van Sickle J, Herlihy AT, Brahney J, Paulsen S, Peck DV, Mitchell R, Pollard AI (2016) Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States? Environ Sci Technol 50:3409–3415. https://doi.org/10.1021/acs.est.5b05950. (PMID: 10.1021/acs.est.5b05950) ; Tao YQ, Lu J (2020) Occurrence of total phosphorus in surface sediments of Chinese lakes and its driving factors and implications. J Hydrol 580:124345. https://doi.org/10.1016/j.jhydrol.2019.124345. (PMID: 10.1016/j.jhydrol.2019.124345) ; Tong YD, Zhang W, Wang XJ, Couture R-M, Larssen T, Zhao Y, Li J, Liang HJ, Liu XY, Bu XG, He W, Zhang QG, Lin Y (2017) Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat Geosci 10(7):507–511. https://doi.org/10.1038/ngeo2967. (PMID: 10.1038/ngeo2967) ; Wan RR, Yang GS, Wang XL, Qin XN, Dai X (2014) Progress of research on the relationship between the Yangtze River and its connected lakes in the middle reaches. J Lake Sci 26(1):1–8. https://doi.org/10.18307/2014.0101 . (in Chinese). ; Wang LL, Ye M, Li QS, Zou H, Zhou YS (2013) Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chin Geogr Sci 23(5):574–583. https://doi.org/10.1007/s11769-013-0627-4. (PMID: 10.1007/s11769-013-0627-4) ; Wang J, Zhang JT, Zan FY, Xi BD, Huo SL (2014a) Study on sediment TN and TP criteria in eastern shallow lakes, China. Ecol Environ Sci 23(6):992–999. https://doi.org/10.3969/j.issn.1674-5906.2014.06.013 . (in Chinese). (PMID: 10.3969/j.issn.1674-5906.2014.06.013.(inChinese)) ; Wang XL, Yang H, Gu ZJ, Zhang ML (2014b) Vertical distribution and relationship between 210 Pb ex activities and nutrients in sediment cores of two different eutrophication level lakes. Environ Sci 35(7):2565–2570. https://doi.org/10.13227/j.hjkx.2014.07.018 . (in Chinese). (PMID: 10.13227/j.hjkx.2014.07.018) ; Wang H, Molinos JG, Heino J, Zhang H, Zhang P, Xu J (2021a) Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. Environ Int 153:106494. https://doi.org/10.1016/j.envint.2021.106494. (PMID: 10.1016/j.envint.2021.106494) ; Wang YP, Xu WW, Han C, Hu WP (2021b) Distribution of nitrogen and phosphorus in Lake Chaohu sediments and pollution evaluation. Environ Sci 42(2):699–711. https://doi.org/10.13227/j.hjkx.202006216 . (in Chinese). (PMID: 10.13227/j.hjkx.202006216) ; Wu YH, Wen YJ, Zhou JX, Wu YY (2014) Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J Civ Eng 18:323–329. https://doi.org/10.1007/s12205-014-0192-0. (PMID: 10.1007/s12205-014-0192-0) ; Wu P, Qin BQ, Yu G (2016) Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China. Environ Sci Pollut Res 23(5):4938–4948. https://doi.org/10.1007/s11356-015-5736-4. (PMID: 10.1007/s11356-015-5736-4) ; Xiao WH, Zhu JY, Zhang HT, Qin DY (2007) Evaluation of water environment and pollution source in Lake Tangxun. Water Security under Changing Environment -- Proceedings of 2007 Annual Conference of Water Resources Committee of Chinese Hydraulic Society. China WaterPower Press, Beijing, pp 45–54. (in Chinese). ; Xu H, Paerl HW, Zhu GW, Qin BQ, Hall NS, Zhu MY (2017a) Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia 787(1):229–242. https://doi.org/10.1007/s10750-016-2967-4. (PMID: 10.1007/s10750-016-2967-4) ; Xu M, Dong XH, Yang XD, Chen X, Zhang QH, Liu Q, Wang R, Yao M, Davidson TA, Jeppesen E (2017b) Recent sedimentation rates of shallow lakes in the middle and lower reaches of the Yangtze River: Patterns, controlling factors and implications for lake management. Water 9(8):617. https://doi.org/10.3390/w9080617. (PMID: 10.3390/w9080617) ; Yan K, Yuan ZW, Goldberg S, Gao W, Ostermann A, Xu JC, Zhang FS, Elser J (2019) Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China’s most eutrophicated lakes. Sci Total Environ 689:1336–1347. https://doi.org/10.1016/j.scitotenv.2019.06.302. (PMID: 10.1016/j.scitotenv.2019.06.302) ; Yang YQ, Zhang JY, Liu L, Wang GQ, Chen MS, Zhang Y, Tang XP (2020) Experimental study on phosphorus release from sediment with fresh-water snail (Bellamya aeruginosa) bioturbation in eutrophic lakes. J Soils Sediments 20(5):2526–2536. https://doi.org/10.1007/s11368-020-02614-2. (PMID: 10.1007/s11368-020-02614-2) ; Yang C, Li J, Yin H (2022) Phosphorus internal loading and sediment diagenesis in a large eutrophic lake (Lake Chaohu, China). Environ Pollut 292:118471. https://doi.org/10.1016/j.envpol.2021.118471. (PMID: 10.1016/j.envpol.2021.118471) ; Yin W, Wang C, Zhang H (2022) Consideration on total phosphorus problem in Yangtze River Basin. Yangtze River 53(4):44–52. https://doi.org/10.16232/j.cnki.1001-4179.2022.04.008 . (in Chinese). (PMID: 10.16232/j.cnki.1001-4179.2022.04.008) ; Yuan ZW, Jiang SY, Sheng H, Liu X, Hua H, Liu XW, Zhang Y (2018) Human Perturbation of the Global Phosphorus Cycle, Changes and Consequences. Environ Sci Technol 52(5):2438–2450. https://doi.org/10.1021/acs.est.7b03910. (PMID: 10.1021/acs.est.7b03910) ; Zhang H, Shan BQ (2008) Historical distribution and partitioning of phosphorus in sediments in an agricultural watershed in the Yangtze-Huaihe region, China. Environ Sci Technol 42(7):2328–2333. https://doi.org/10.1021/es0720208. (PMID: 10.1021/es0720208) ; Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005) Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles 19(1):GB1020. https://doi.org/10.1029/2004gb002296. (PMID: 10.1029/2004gb002296) ; Zhang L, Fan CX, Wang JJ, Chen YW, Jiang JH (2008) Nitrogen and phosphorus forms and release risks of lake sediments from the middle and lower reaches of the Yangtze River. J Lake Sci 20(3):263–270. https://doi.org/10.18307/2008.0301 . (in Chinese). (PMID: 10.18307/2008.0301) ; Zhang WS, Swaney DP, Hong B, Howarth RW, Han HJ, Li XY (2015) Net anthropogenic phosphorus inputs and riverine phosphorus fluxes in highly populated headwater watersheds in China. Biogeochemistry 126(3):269–283. https://doi.org/10.1007/s10533-015-0145-9. (PMID: 10.1007/s10533-015-0145-9) ; Zhang WQ, Jin X, Zhu XL, Shan BQ (2016) Characteristics and Distribution of Phosphorus in Surface Sediments of Limnetic Ecosystem in Eastern China. PLoS One 11(6):e0156488. https://doi.org/10.1371/journal.pone.0156488. (PMID: 10.1371/journal.pone.0156488) ; Zhang YW, Guo YP, Tang ZY, Feng YH, Zhu XR, Xu WT, Bai YF, Zhou GY, Xie ZQ, Fang JY (2021) Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth Syst Sci Data 13(11):5337–5351. https://doi.org/10.5194/essd-13-5337-2021. (PMID: 10.5194/essd-13-5337-2021) ; Zhao X, Xia X (2012) Total nitrogen and total phosphorous in urban soils used for different purposes in Beijing, China. Procedia Environ Sci 13:95–104. https://doi.org/10.1016/j.proenv.2012.01.009 . (in Chinese). (PMID: 10.1016/j.proenv.2012.01.009.(inChinese)) ; Zheng XL, Zhang JJ, Chen L (2013) Advances in the study of migration and transformation mechanisms of endogenous phosphorus via sediment resuspension. Adv Water Sci 24(2):287–295. https://doi.org/10.14042/j.cnki.32.1309.2013.02.010 . (in Chinese). (PMID: 10.14042/j.cnki.32.1309.2013.02.010) ; Zhuo Y, Zeng WH, Ma BR, Cui D, Xie YX, Wang JP (2022) Spatiotemporal variation and influencing factors of nitrogen and phosphorus in lake sediments in China since 1850. J Clean Prod 368:133170. https://doi.org/10.1016/j.jclepro.2022.133170. (PMID: 10.1016/j.jclepro.2022.133170)
  • Grant Information: XDB31000000 Strategic Priority Research Program of the Chinese Academy of Sciences; 42207503 National Natural Science Foundation of China; 42307561 National Natural Science Foundation of China; award Y2021086 Youth Innovation Promotion Association of the Chinese Academy of Sciences
  • Contributed Indexing: Keywords: Estimation method; Lake management; Lake sediments; Phosphorus pollution; Regional phosphorus pools; Shallow lakes
  • Substance Nomenclature: 27YLU75U4W (Phosphorus) ; 0 (Water Pollutants, Chemical) ; 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20231031 Date Completed: 20231129 Latest Revision: 20231205
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -