Zum Hauptinhalt springen

Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation.

Liu, C ; Gao, Q ; et al.
In: Molecular neurobiology, Jg. 61 (2024-05-01), Heft 5, S. 2556-2568
Online academicJournal

Titel:
Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation.
Autor/in / Beteiligte Person: Liu, C ; Gao, Q ; Dong, J ; Cai, H
Link:
Zeitschrift: Molecular neurobiology, Jg. 61 (2024-05-01), Heft 5, S. 2556-2568
Veröffentlichung: Clifton, NJ : Humana Press, c1987-, 2024
Medientyp: academicJournal
ISSN: 1559-1182 (electronic)
DOI: 10.1007/s12035-023-03735-8
Schlagwort:
  • Animals
  • Male
  • Mice
  • Apoptosis
  • Brain Ischemia metabolism
  • Brain Ischemia pathology
  • Cell Line
  • Cell Survival
  • Infarction, Middle Cerebral Artery pathology
  • Infarction, Middle Cerebral Artery metabolism
  • Protein Biosynthesis
  • Adenosine analogs & derivatives
  • Adenosine metabolism
  • Autophagy physiology
  • Autophagy genetics
  • Mice, Inbred C57BL
  • Neurons metabolism
  • Neurons pathology
  • Reperfusion Injury metabolism
  • Reperfusion Injury pathology
  • Reperfusion Injury genetics
  • RNA-Binding Proteins metabolism
  • RNA-Binding Proteins genetics
  • Upstream Stimulatory Factors metabolism
  • Upstream Stimulatory Factors genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Neurobiol] 2024 May; Vol. 61 (5), pp. 2556-2568. <i>Date of Electronic Publication: </i>2023 Nov 02.
  • MeSH Terms: Adenosine* / analogs & derivatives ; Adenosine* / metabolism ; Autophagy* / physiology ; Autophagy* / genetics ; Mice, Inbred C57BL* ; Neurons* / metabolism ; Neurons* / pathology ; Reperfusion Injury* / metabolism ; Reperfusion Injury* / pathology ; Reperfusion Injury* / genetics ; RNA-Binding Proteins* / metabolism ; RNA-Binding Proteins* / genetics ; Upstream Stimulatory Factors* / metabolism ; Upstream Stimulatory Factors* / genetics ; Animals ; Male ; Mice ; Apoptosis ; Brain Ischemia / metabolism ; Brain Ischemia / pathology ; Cell Line ; Cell Survival ; Infarction, Middle Cerebral Artery / pathology ; Infarction, Middle Cerebral Artery / metabolism ; Protein Biosynthesis
  • References: Schregel K, Behme D, Tsogkas I, Knauth M, Maier I, Karch A, Mikolajczyk R, Bähr M et al (2018) Optimized management of endovascular treatment for acute ischemic stroke. J Vis Exp: JoVE 131. https://doi.org/10.3791/56397. ; Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, Yang Y (2018) Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev 2018:3804979. https://doi.org/10.1155/2018/3804979. (PMID: 10.1155/2018/3804979297701665892600) ; Ravindran S, Kurian GA (2019) Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 24(3):581–594. https://doi.org/10.1007/s12192-019-00990-4. (PMID: 10.1007/s12192-019-00990-4310252396527675) ; Shao ZQ, Dou SS, Zhu JG, Wang HQ, Wang CM, Cheng BH, Bai B (2021) Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen Res 16(6):1044–1051. https://doi.org/10.4103/1673-5374.300725. (PMID: 10.4103/1673-5374.30072533269749) ; Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84. https://doi.org/10.3389/fphar.2020.00084. (PMID: 10.3389/fphar.2020.00084321534047047211) ; Sun X, Liu H, Sun Z, Zhang B, Wang X, Liu T, Pan T, Gao Y et al (2020) Acupuncture protects against cerebral ischemia-reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis. Molecular Medicine (Cambridge, Mass) 26(1):105. https://doi.org/10.1186/s10020-020-00236-5. (PMID: 10.1186/s10020-020-00236-533167857) ; Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, Zang J, Weng Z et al (2022) Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther 30(3):1275–1287. https://doi.org/10.1016/j.ymthe.2021.11.004. (PMID: 10.1016/j.ymthe.2021.11.00434763084) ; Chi TF, Khoder-Agha F, Mennerich D, Kellokumpu S, Miinalainen I, Kietzmann T, Dimova EY (2020) Loss of USF2 promotes proliferation, migration and mitophagy in a redox-dependent manner. Redox Biol 37:101750. https://doi.org/10.1016/j.redox.2020.101750. (PMID: 10.1016/j.redox.2020.101750330593147566946) ; Li S, Zhang J, Qian S, Wu X, Sun L, Ling T, Jin Y, Li W et al (2021) S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (London, England) 41(2):154–170. https://doi.org/10.1002/cac2.12130. (PMID: 10.1002/cac2.12130) ; Shimomura K, Kumar V, Koike N, Kim TK, Chong J, Buhr ED, Whiteley AR, Low SS et al (2013) Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. 2:eLife, e00426. https://doi.org/10.7554/eLife.00426. ; Chi TF, Horbach T, Götz C, Kietzmann T, Dimova EY (2019) Cyclin-dependent kinase 5 (CDK5)-mediated phosphorylation of upstream stimulatory factor 2 (USF2) contributes to carcinogenesis. Cancers 11(4). https://doi.org/10.3390/cancers11040523. ; Liu S, Shi L, Wang S (2007) Overexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury. Am J Physiol Renal Physiol 293(5):F1727–F1735. https://doi.org/10.1152/ajprenal.00316.2007. (PMID: 10.1152/ajprenal.00316.200717881461) ; Prasad S, Singh K (2008) Interaction of USF1/USF2 and alpha-Pal/Nrf1 to Fmr-1 promoter increases in mouse brain during aging. Biochem Biophys Res Commun 376(2):347–351. https://doi.org/10.1016/j.bbrc.2008.08.155. (PMID: 10.1016/j.bbrc.2008.08.15518782566) ; Bendl J, Hauberg ME, Girdhar K, Im E, Vicari JM, Rahman S, Fernando MB, Townsley KG et al (2022) The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease. Nat Neurosci 25(10):1366–1378. https://doi.org/10.1038/s41593-022-01166-7. (PMID: 10.1038/s41593-022-01166-7361714289581463) ; Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L, Verbeek DS, Mulder J et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cerebral Cortex (New York, NY: 1991) 28(9):3129–3142. https://doi.org/10.1093/cercor/bhx181. (PMID: 10.1093/cercor/bhx181) ; Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ (2021) N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 14(1):117. https://doi.org/10.1186/s13045-021-01129-8. (PMID: 10.1186/s13045-021-01129-8343155128313886) ; Zhang N, Ding C, Zuo Y, Peng Y, Zuo L (2022) N6-methyladenosine and neurological diseases. Mol Neurobiol 59(3):1925–1937. https://doi.org/10.1007/s12035-022-02739-0. (PMID: 10.1007/s12035-022-02739-035032318) ; Shao L, Chen B, Wu Q, Xu Y, Yi J, Guo Z, Liu B (2022) N(6)-methyladenosine-modified lncRNA and mRNA modification profiles in cerebral ischemia-reperfusion injury. Front Genet 13:973979. https://doi.org/10.3389/fgene.2022.973979. (PMID: 10.3389/fgene.2022.973979364792469720305) ; Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF et al (2020) N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 11:2040622320916024. https://doi.org/10.1177/2040622320916024. (PMID: 10.1177/2040622320916024324261017222229) ; Liang E, Xiao S, Zhao C, Zhang Y, Fu G (2023) M6A modification promotes blood-brain barrier breakdown during cerebral ischemia/reperfusion injury through increasing matrix metalloproteinase 3 expression. Heliyon 9(6):e16905. https://doi.org/10.1016/j.heliyon.2023.e16905. (PMID: 10.1016/j.heliyon.2023.e169053733293810275791) ; Kallenberger L, Erb R, Kralickova L, Patrignani A, Stöckli E, Jiricny J (2019) Ectopic methylation of a single persistently unmethylated CpG in the promoter of the vitellogenin gene abolishes its inducibility by estrogen through attenuation of upstream stimulating factor binding. Mol Cell Biol 39(23). https://doi.org/10.1128/mcb.00436-19. ; Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M et al (2022) Plasma PFOA and PFOS levels, DNA methylation, and blood lipid levels: a pilot study. Environ Sci Technol 56(23):17039–17051. https://doi.org/10.1021/acs.est.2c04107. (PMID: 10.1021/acs.est.2c0410736374530) ; Zhang B, Zhang HX, Shi ST, Bai YL, Zhe X, Zhang SJ, Li YJ (2019) Interleukin-11 treatment protected against cerebral ischemia/reperfusion injury. Biomed Pharmacother = Biomedecine & Pharmacotherapie 115:108816. https://doi.org/10.1016/j.biopha.2019.108816. (PMID: 10.1016/j.biopha.2019.108816) ; Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D, Han P, Ji SJ (2019) The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 47(9):4765–4777. https://doi.org/10.1093/nar/gkz157. (PMID: 10.1093/nar/gkz157308430716511866) ; Wang C, Zeng J, Li LJ, Xue M, He SL (2021) Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death Dis 12(11):1055. https://doi.org/10.1038/s41419-021-04342-y. (PMID: 10.1038/s41419-021-04342-y347431858572225) ; Yu S, Yu M, He X, Wen L, Bu Z, Feng J (2019) KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 18(3):e12940. https://doi.org/10.1111/acel.12940. (PMID: 10.1111/acel.12940309454546516167) ; Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, Gao WJ (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules (Basel, Switzerland) 24(9). https://doi.org/10.3390/molecules24091838. ; Zhang B, Deng F, Zhou C, Fang S (2020) ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Hum Cell 33(4):1046–1055. https://doi.org/10.1007/s13577-020-00406-x. (PMID: 10.1007/s13577-020-00406-x32772229) ; Li L, Huang J (2020) Rapamycin pretreatment alleviates cerebral ischemia/reperfusion injury in dose-response manner through inhibition of the autophagy and NFκB pathways in rats. Dose-response : a publication of International Hormesis Society 18(3):1559325820946194. https://doi.org/10.1177/1559325820946194. (PMID: 10.1177/155932582094619432874166) ; Liu F, Wang X, Zheng B, Li D, Chen C, Lee IS, Zhong J, Li D et al (2020) USF2 enhances the osteogenic differentiation of PDLCs by promoting ATF4 transcriptional activities. J Periodontal Res 55(1):68–76. https://doi.org/10.1111/jre.12689. (PMID: 10.1111/jre.1268931448831) ; Hu D, Tjon EC, Andersson KM, Molica GM, Pham MC, Healy B, Murugaiyan G, Pochet N et al (2020) Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. Proc Natl Acad Sci U S A 117(48):30639–30648. https://doi.org/10.1073/pnas.2007935117. (PMID: 10.1073/pnas.2007935117332036787720234) ; Park KY, Russo AF (2008) Control of the calcitonin gene-related peptide enhancer by upstream stimulatory factor in trigeminal ganglion neurons. J Biol Chem 283(9):5441–5451. https://doi.org/10.1074/jbc.M708662200. (PMID: 10.1074/jbc.M70866220018167349) ; Kumari D, Usdin K (2001) Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for Fragile X mental retardation syndrome. J Biol Chem 276(6):4357–4364. https://doi.org/10.1074/jbc.M009629200. (PMID: 10.1074/jbc.M00962920011058604) ; Liu X, Gao W, Liu W (2021) Identification of KLF6/PSGs and NPY-related USF2/CEACAM transcriptional regulatory networks via spinal cord bulk and single-cell RNA-Seq analysis. Dis Markers 2021:2826609. https://doi.org/10.1155/2021/2826609. (PMID: 10.1155/2021/2826609348809568648463) ; Huang J, Jiang B, Li GW, Zheng D, Li M, Xie X, Pan Y, Wei M et al (2022) m(6)A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation. Cell Rep 41(8):111693. https://doi.org/10.1016/j.celrep.2022.111693. (PMID: 10.1016/j.celrep.2022.11169336417851) ; Huang P, Liu M, Zhang J, Zhong X, Zhong C (2023) YTHDF1 attenuates TBI-induced brain-gut axis dysfunction in mice. Int J Mol Sci 24(4). https://doi.org/10.3390/ijms24044240. ; Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, Li J, Hao P et al (2018) m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563(7730):249–253. https://doi.org/10.1038/s41586-018-0666-1. (PMID: 10.1038/s41586-018-0666-1304018356226095) ; Ma H, Ye D, Liu Y, Wu P, Yu L, Guo L, Gao Y, Liu Y et al (2023) Propofol suppresses OGD/R-induced ferroptosis in neurons by inhibiting the HIF-1α/YTHDF1/BECN1 axis. Brain Inj 37(11):1285–1293. https://doi.org/10.1080/02699052.2023.2237881. (PMID: 10.1080/02699052.2023.223788137614036) ; Li X, An P, Han F, Yu M, Yu Z, Li Y (2023) Silencing of YTHDF1 attenuates cerebral stroke by inducing PTEN degradation and activating the PTEN/AKT/mTOR pathway. Mol Biotechnol 65(5):822–832. https://doi.org/10.1007/s12033-022-00575-0. (PMID: 10.1007/s12033-022-00575-036261761) ; Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M (2019) CDC25A pathway toward tumorigenesis: molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem 120(3):2919–2928. https://doi.org/10.1002/jcb.26838. (PMID: 10.1002/jcb.2683830443958) ; Chen S, Tang Y, Yang C, Li K, Huang X, Cao J (2020) Silencing CDC25A inhibits the proliferation of liver cancer cells by downregulating IL-6 in vitro and in vivo. Int J Mol Med 45(3):743–752. https://doi.org/10.3892/ijmm.2020.4461. (PMID: 10.3892/ijmm.2020.4461319222257015122) ; Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X (2018) Phosphatase Cdc25A negatively regulates the antiviral immune response by inhibiting TBK1 activity. J Virol 92(19). https://doi.org/10.1128/jvi.01118-18. ; Chatterjee N, Sanphui P, Kemeny S, Greene LA, Biswas SC (2016) Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid. Cell Death Dis 2:16083. https://doi.org/10.1038/cddiscovery.2016.83. (PMID: 10.1038/cddiscovery.2016.83) ; Fu YR, Liu XJ, Li XJ, Shen ZZ, Yang B, Wu CC, Li JF, Miao LF et al (2015) MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol 89(2):1070–1082. https://doi.org/10.1128/jvi.01740-14. (PMID: 10.1128/jvi.01740-1425378484) ; Zhang Y, Qu D, Morris EJ, O’Hare MJ, Callaghan SM, Slack RS, Geller HM, Park DS (2006) The Chk1/Cdc25A pathway as activators of the cell cycle in neuronal death induced by camptothecin. J Neurosci 26(34):8819–8828. https://doi.org/10.1523/jneurosci.2593-06.2006. (PMID: 10.1523/jneurosci.2593-06.2006169288716674376) ; Mascia F, Mazo I, Alterovitz WL, Karagiannis K, Wu WW, Shen RF, Beaver JA, Rao VA (2022) In search of autophagy biomarkers in breast cancer: receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines. PloS One 17(1):e0262134. https://doi.org/10.1371/journal.pone.0262134. (PMID: 10.1371/journal.pone.0262134349904748735604) ; Wang FZ, Chang ZY, Fei HR, Yang MF, Yang XY, Sun BL (2014) CCT128930 induces cell cycle arrest, DNA damage, and autophagy independent of Akt inhibition. Biochimie 103:118–125. https://doi.org/10.1016/j.biochi.2014.04.008. (PMID: 10.1016/j.biochi.2014.04.00824793486) ; Cen WJ, Feng Y, Li SS, Huang LW, Zhang T, Zhang W, Kong WD, Jiang JW (2018) Iron overload induces G1 phase arrest and autophagy in murine preosteoblast cells. J Cell Physiol 233(9):6779–6789. https://doi.org/10.1002/jcp.26405. (PMID: 10.1002/jcp.2640529244196)
  • Contributed Indexing: Keywords: Autophagy; Cdc25A; Cerebral ischemia-reperfusion injury; The m6A reader YTHDF1; Usf2
  • Substance Nomenclature: K72T3FS567 (Adenosine) ; CLE6G00625 (N-methyladenosine) ; 0 (RNA-Binding Proteins) ; 0 (Upstream Stimulatory Factors) ; 0 (Ythdf1 protein, mouse) ; EC 3.1.3.48 (Cdc25a protein, mouse) ; 0 (Usf2 protein, mouse)
  • Entry Date(s): Date Created: 20231102 Date Completed: 20240424 Latest Revision: 20240506
  • Update Code: 20240507

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -