Zum Hauptinhalt springen

Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia.

Zuo, HJ ; Wang, PX ; et al.
In: Molecular neurobiology, Jg. 61 (2024-05-01), Heft 5, S. 2728-2744
Online academicJournal

Titel:
Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia.
Autor/in / Beteiligte Person: Zuo, HJ ; Wang, PX ; Ren, XQ ; Shi, HL ; Shi, JS ; Guo, T ; Wan, C ; Li, JJ
Link:
Zeitschrift: Molecular neurobiology, Jg. 61 (2024-05-01), Heft 5, S. 2728-2744
Veröffentlichung: Clifton, NJ : Humana Press, c1987-, 2024
Medientyp: academicJournal
ISSN: 1559-1182 (electronic)
DOI: 10.1007/s12035-023-03743-8
Schlagwort:
  • Animals
  • Male
  • Mice
  • Apoptosis drug effects
  • Cell Line
  • Forkhead Box Protein O3 metabolism
  • Inflammation Mediators metabolism
  • Lipopolysaccharides pharmacology
  • Mice, Inbred C57BL
  • Phosphatidylinositol 3-Kinases metabolism
  • Proto-Oncogene Proteins c-akt metabolism
  • Reactive Oxygen Species metabolism
  • Sirtuin 3 metabolism
  • Benzyl Alcohols pharmacology
  • Glucosides pharmacology
  • Inflammation pathology
  • Inflammation metabolism
  • Microglia metabolism
  • Microglia drug effects
  • Neuroprotective Agents pharmacology
  • Signal Transduction drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Neurobiol] 2024 May; Vol. 61 (5), pp. 2728-2744. <i>Date of Electronic Publication: </i>2023 Nov 06.
  • MeSH Terms: Benzyl Alcohols* / pharmacology ; Glucosides* / pharmacology ; Inflammation* / pathology ; Inflammation* / metabolism ; Microglia* / metabolism ; Microglia* / drug effects ; Neuroprotective Agents* / pharmacology ; Signal Transduction* / drug effects ; Animals ; Male ; Mice ; Apoptosis / drug effects ; Cell Line ; Forkhead Box Protein O3 / metabolism ; Inflammation Mediators / metabolism ; Lipopolysaccharides / pharmacology ; Mice, Inbred C57BL ; Phosphatidylinositol 3-Kinases / metabolism ; Proto-Oncogene Proteins c-akt / metabolism ; Reactive Oxygen Species / metabolism ; Sirtuin 3 / metabolism
  • References: Guo J, Zhang X L, Bao Z R et al (2021) Gastrodin regulates the Notch Signaling Pathway and Sirt3 in activated Microglia in Cerebral hypoxic-ischemia neonatal rats and in activated BV-2 microglia [J]. Neuromolecular Med 23(3):348–362. (PMID: 3309537710.1007/s12017-020-08627-x) ; Li SJ, Liu W, Wang JL et al (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy [J]. Eur Rev Med Pharmacol Sci 18(6):905–909. (PMID: 24706318) ; Huang J Z, Ren Y, Jiang Y et al (2018) GluR1 protects hypoxic ischemic brain damage via activating akt signaling pathway in neonatal rats [J]. Eur Rev Med Pharmacol Sci 22(24):8857–8865. (PMID: 30575928) ; Jellema R K, Lima Passos V, Zwanenburg A et al (2013) Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep [J]. J Neuroinflammation 10:13. (PMID: 23347579) ; Guo L, Wang D, BO G et al (2016) Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy [J]. Experimental and Therapeutic Medicine 12(5):2835–2842. (PMID: 27882082510370310.3892/etm.2016.3740) ; Yang L, Zhao H (2020) Treatment and new progress of neonatal hypoxic-ischemic brain damage [J]. Histol Histopathol 35(9):929–936. (PMID: 32167570) ; Du Plessis A J, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn [J]. Curr Opin Neurol 15(2):151–157. (PMID: 1192362810.1097/00019052-200204000-00005) ; Liu F, Mccullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy [J]. Acta Pharmacol Sin 34(9):1121–1130. (PMID: 23892271376433410.1038/aps.2013.89) ; Kreutzberg G W (1996) Microglia: a sensor for pathological events in the CNS [J]. Trends Neurosci 19(8):312–318. (PMID: 884359910.1016/0166-2236(96)10049-7) ; Yenari M A, Kauppinen T M, Swanson RA (2010) Microglial activation in Stroke: therapeutic targets [J]. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 7(4):378–391. (PMID: 2088050210.1016/j.nurt.2010.07.005) ; El Khoury J, Hickman S E, Thomas C A et al (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s Disease [J]. Neurobiol Aging 19(1 Suppl):S81–S84. (PMID: 956247410.1016/S0197-4580(98)00036-0) ; Thomas W E (1992) Brain macrophages: evaluation of microglia and their functions [J]. Brain Res Brain Res Rev 17(1):61–74. (PMID: 163827610.1016/0165-0173(92)90007-9) ; Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications [J]. Neurol Res 26(8):884–892. (PMID: 1572727210.1179/016164104X2357) ; Davies C A, Loddick S A, Stroemer R P et al (1998) An integrated analysis of the progression of cell responses induced by permanent focal middle cerebral artery occlusion in the rat [J]. Exp Neurol 154(1):199–212. (PMID: 987528110.1006/exnr.1998.6891) ; Schroeter M, Jander S, Witte O W et al (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion [J]. J Neuroimmunol 55(2):195–203. (PMID: 753026010.1016/0165-5728(94)90010-8) ; Walker D G, Lue L F (2015) Immune phenotypes of microglia in human neurodegenerative Disease: challenges to detecting microglial polarization in human brains [J]. Alzheimers Res Ther 7(1):56. (PMID: 2628614510.1186/s13195-015-0139-9) ; Perego C, Fumagalli S, De Simoni M G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice [J]. J Neuroinflammation 8:174. (PMID: 22152337325154810.1186/1742-2094-8-174) ; Fumagalli S, Perego C, Ortolano F et al (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice [J]. Glia 61(6):827–842. (PMID: 2344089710.1002/glia.22474) ; He Y, Gao Y, Zhang Q et al (2020) IL-4 switches Microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH [J]. Neuroscience 437:161–171. (PMID: 3222423010.1016/j.neuroscience.2020.03.008) ; Tang Y (2016) Differential roles of M1 and M2 microglia in neurodegenerative Diseases [J]. Mol Neurobiol 53(2):1181–1194. (PMID: 2559835410.1007/s12035-014-9070-5) ; Kaur C, Rathnasamy G, Ling EA (2013) Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina [J]. J Neuroimmune Pharmacol 8(1):66–78. (PMID: 2236767910.1007/s11481-012-9347-2) ; Del Bigio M R, Becker LE (1994) Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants [J]. Neuropathol Appl Neurobiol 20(2):144–151. (PMID: 807264510.1111/j.1365-2990.1994.tb01173.x) ; Disdier C, Stonestreet BS (2020) Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain [J]. J Neurosci Res 98(7):1468–1484. (PMID: 32060970724213310.1002/jnr.24590) ; Pappas A, Shankaran S, Mcdonald S A et al (2015) Cognitive outcomes after neonatal encephalopathy [J]. Pediatrics 135(3):e624–e634. (PMID: 25713280433832110.1542/peds.2014-1566) ; Gluckman P D, Wyatt JS (2005) Selective head cooling with mild systemic Hypothermia after neonatal encephalopathy: multicentre randomised trial [J]. Lancet (London England) 365(9460):663–670. (PMID: 1572147110.1016/S0140-6736(05)17946-X) ; Kim HJ, Moon K D, Oh S Y et al (2001) Ether fraction of methanol extracts of Gastrodia elata, a traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus [J]. Neuroscience letters, 314(1–2): 65 – 8. ; Dai J N, Zong Y, Zhong L M et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways [J]. PLoS ONE 6(7):e21891. (PMID: 2176592210.1371/journal.pone.0021891) ; Peng Z, Wang S, Chen G et al (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway [J]. Neurochem Res 40(4):661–673. (PMID: 2558291610.1007/s11064-015-1513-5) ; Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway [J]. Int J Clin Exp Med 8(5):8197–8203. (PMID: 262213934509338) ; Narayanankutty A (2019) PI3K/ Akt/ mTOR pathway as a therapeutic target for Colorectal Cancer: a review of preclinical and clinical evidence [J]. Curr Drug Targets 20(12):1217–1226. (PMID: 3121538410.2174/1389450120666190618123846) ; Kamada H, Nito C, Endo H et al (2007) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats [J]. J Cereb Blood Flow Metab 27(3):521–533. (PMID: 1682079910.1038/sj.jcbfm.9600367) ; Ma X H, Gao Q, Jia Z et al (2015) Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats [J]. Int J Neurosci 125(2):140–146. (PMID: 2473099810.3109/00207454.2014.912217) ; Yang W, Liu Y, Xu Q Q et al (2020) Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3β Pathway in Experimental Models of Alzheimer’s Disease [J]. Oxid Med Cell Longev, 2020: 4754195. ; Fu X, Chen H (2020) C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation [J]. Life Sci 256:117894. (PMID: 3250254410.1016/j.lfs.2020.117894) ; Zhang B, Yang N, Mo ZM et al (2017) IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1 [J]. Front Mol Neurosci 10:271. (PMID: 28912678558314610.3389/fnmol.2017.00271) ; North B J Verdine, Sirtuins (2004) Sir2-related NAD-dependent protein deacetylases [J]. Genome Biol 5(5):224. (PMID: 1512844041646210.1186/gb-2004-5-5-224) ; Li Y, Ma Y, Song L et al (2018) SIRT3 deficiency exacerbates p53/Parkin–mediated mitophagy inhibition and promotes mitochondrial dysfunction: implication for aged hearts [J]. Int J Mol Med 41(6):3517–3526. (PMID: 29532856) ; Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production [J]. Proc Natl Acad Sci U S A 108(35):14608–14613. (PMID: 21873205316749610.1073/pnas.1111308108) ; Haigis M C, Deng C X, Finley L W et al (2012) SIRT3 is a mitochondrial Tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis [J]. Cancer Res 72(10):2468–2472. (PMID: 22589271335472610.1158/0008-5472.CAN-11-3633) ; Alhazzazi T Y, Kamarajan P (2011) SIRT3 and cancer: Tumor promoter or suppressor? [J]. Biochim Biophys Acta 1816(1):80–88. (PMID: 21586315) ; Ahn B H, Kim H S Songs et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J]. Proc Natl Acad Sci U S A 105(38):14447–14452. (PMID: 1879453110.1073/pnas.0803790105) ; Wang X, Dai Y, Zhang X et al (2021) CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation [J], vol 22. Cancer biology & therapy, pp 30–39. 1. ; Wang Z, Li Y, Wang Y et al (2019) Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway [J]. Biochem Biophys Res Commun 508(2):398–404. (PMID: 3050209310.1016/j.bbrc.2018.11.140) ; Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species [J]. Prog Neurobiol 106–107:1–16. (PMID: 2358330710.1016/j.pneurobio.2013.04.001) ; Min Y, Yan L, Wang Q et al (2020) Distinct residential and infiltrated macrophage populations and their phagocytic function in mild and severe neonatal hypoxic-ischemic brain damage [J]. Front Cell Neurosci 14:244. (PMID: 32903800743890410.3389/fncel.2020.00244) ; Liu SJ, Liu X Y, Li JH et al (2018) Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway [J]. Neurochem Int 120:49–63. (PMID: 3007523110.1016/j.neuint.2018.07.012) ; Li C, Mo Z, Lei J et al (2018) Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway [J]. Int J Biochem Cell Biol 99:169–177. (PMID: 2963502310.1016/j.biocel.2018.03.020) ; Liu X H, Yan H, Xu M et al (2013) Hyperbaric oxygenation reduces long-term brain injury and ameliorates behavioral function by suppression of apoptosis in a rat model of neonatal hypoxia-ischemia [J]. Neurochem Int 62(7):922–930. (PMID: 2349979410.1016/j.neuint.2013.03.004) ; Huang J, Lu W, Doycheva D M et al (2020) IRE1alpha inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model [J]. J Neuroinflammation 17(1):152. (PMID: 32375838720383610.1186/s12974-020-01796-3) ; Li JJ, Lu J, Kaur C et al (2009) Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells [J]. Neuroscience 158(4):1488–1499. (PMID: 1911860010.1016/j.neuroscience.2008.11.046) ; Livak K J, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods 25(4):402–408. (PMID: 1184660910.1006/meth.2001.1262) ; Rangarajan P, Karthikeyan A, LU J et al (2015) Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia [J]. Neuroscience 311:398–414. (PMID: 2652398010.1016/j.neuroscience.2015.10.048) ; Hasegawa M, Ogihara T, Tamai H et al (2009) Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state [J]. Brain Res 1283:1–13. (PMID: 1952456110.1016/j.brainres.2009.06.016) ; Inder T E, Volpe JJ (2000) Mechanisms of perinatal brain injury [J]. Semin Neonatol 5(1):3–16. (PMID: 1080274610.1053/siny.1999.0112) ; Tan W K, Williams C E, During M J et al (1996) Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep [J]. Pediatr Res 39(5):791–797. (PMID: 872623010.1203/00006450-199605000-00008) ; Tan W K, Williams C E, Gunn A J et al (1992) Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep [J]. Ann Neurol 32(5):677–682. (PMID: 144924810.1002/ana.410320511) ; Macmanus JP, Buchan A M, Hill I E et al (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain [J]. Neurosci Lett 164(1–2):89–92. (PMID: 815262210.1016/0304-3940(93)90864-H) ; Beilharz E J, Williams C E, Dragunow M et al (1995) Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss [J]. Brain Res Mol Brain Res 29(1):1–14. (PMID: 776998610.1016/0169-328X(94)00217-3) ; Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science 308(5726):1314–1318. (PMID: 1583171710.1126/science.1110647) ; Iadecola C, Anrather J (2011) The immunology of Stroke: from mechanisms to translation [J]. Nat Med 17(7):796–808. (PMID: 21738161313727510.1038/nm.2399) ; Varnum MM (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s Disease brain [J]. Arch Immunol Ther Exp (Warsz) 60(4):251–266. (PMID: 2271065910.1007/s00005-012-0181-2) ; Porta C, Rimoldi M, Raes G et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB [J]. Proc Natl Acad Sci U S A 106(35):14978–14983. (PMID: 19706447273642910.1073/pnas.0809784106) ; Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J]. Trends Immunol 23(11):549–555. (PMID: 1240140810.1016/S1471-4906(02)02302-5) ; Liu Y, Gao J (2018) A review on Central Nervous System effects of Gastrodin [J]. Front Pharmacol 9:24. (PMID: 29456504580129210.3389/fphar.2018.00024) ; Yang P, Han Y (2013) Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-κB and MAPKs activation via the phosphatidylinositol 3-kinase signaling [J]. Biochem Pharmacol 85(8):1124–1133. (PMID: 2337612010.1016/j.bcp.2013.01.020) ; Cheng C, Chen X, Wang Y et al (2021) MSCs–derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6 [J]. 27(1):67 Molecular medicine (Cambridge, Mass). ; Huang Y, Yu J, Wan F et al (2014) Panaxatriol saponins attenuated oxygen-glucose deprivation injury in PC12 cells via activation of PI3K/Akt and Nrf2 signaling pathway [J]. Oxid Med Cell Longev, 2014: 978034. ; Sundaresan N R, Gupta M, Kim G et al (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice [J]. J Clin Invest 119(9):2758–2771. ; Wang B, Guo H, Li X et al (2018) Adiponectin attenuates oxygen-glucose Deprivation-Induced mitochondrial oxidative Injury and apoptosis in hippocampal HT22 cells via the JAK2/STAT3 pathway [J]. Cell Transpl 27(12):1731–1743. (PMID: 10.1177/0963689718779364) ; Moro MA, Almeida A, Bolanos J P et al (2005) Mitochondrial respiratory chain and free radical generation in Stroke [J]. Free Radic Biol Med 39(10):1291–1304. (PMID: 1625763810.1016/j.freeradbiomed.2005.07.010) ; Yang K E, Jang H J, Hwang I H et al (2020) Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling [J]. J Ginseng Res 44(2):341–349. (PMID: 3214841710.1016/j.jgr.2019.08.002) ; Song C, Zhao J, Fu B et al (2017) Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway [J]. Free Radic Biol Med 112:616–630. (PMID: 2891209810.1016/j.freeradbiomed.2017.09.005) ; Ai Mamun A, Yu H (2018) Inflammatory responses are sex specific in chronic hypoxic-ischemic encephalopathy [J]. Cell Transpl 27(9):1328–1339. (PMID: 10.1177/0963689718766362) ; Mirza MA, Ritzel R, Xu Y et al (2015) Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy [J]. J Neuroinflammation 12:32. (PMID: 25889641435948210.1186/s12974-015-0251-6) ; Ngwa C, Qi S, Mamun A A et al (2021) Age and sex differences in primary microglia culture: a comparative study [J]. J Neurosci Methods 364:109359. (PMID: 34537225855106010.1016/j.jneumeth.2021.109359) ; Qi S, Al Mamun A, Ngwa C et al (2021) X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals [J]. J Neuroinflammation 18(1):70. (PMID: 33712031795363810.1186/s12974-021-02120-3)
  • Grant Information: No. 31960194 National Natural Science Foundation of China; No.31460274 National Natural Science Foundation of China; No. 2019FE001 (-003) Applied Basic Research Projects of Yunnan Province of China; K13219546 Scientific Research Fund Project of Education Department of Yunnan Province; ZX2019030501 Special Fund of Clinical Research Center for Neurological Diseases of Yunnan Province
  • Contributed Indexing: Keywords: Gastrodin; Hypoxic-ischemic brain damage; Microglia; PI3K/AKT–Sirt3
  • Substance Nomenclature: 0 (Benzyl Alcohols) ; 0 (Forkhead Box Protein O3) ; 5YS9U2W3RQ (gastrodin) ; 0 (Glucosides) ; 0 (Inflammation Mediators) ; 0 (Lipopolysaccharides) ; 0 (Neuroprotective Agents) ; EC 2.7.1.- (Phosphatidylinositol 3-Kinases) ; EC 2.7.11.1 (Proto-Oncogene Proteins c-akt) ; 0 (Reactive Oxygen Species) ; 0 (Sirt3 protein, mouse) ; EC 3.5.1.- (Sirtuin 3)
  • Entry Date(s): Date Created: 20231106 Date Completed: 20240424 Latest Revision: 20240507
  • Update Code: 20240507

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -