Zum Hauptinhalt springen

On the persistence of near-surface temperature dynamics in a warming world.

Estrada, F ; Perron, P ; et al.
In: Annals of the New York Academy of Sciences, Jg. 1531 (2024), Heft 1, S. 69-83
Online academicJournal

Titel:
On the persistence of near-surface temperature dynamics in a warming world.
Autor/in / Beteiligte Person: Estrada, F ; Perron, P ; Yamamoto, Y
Link:
Zeitschrift: Annals of the New York Academy of Sciences, Jg. 1531 (2024), Heft 1, S. 69-83
Veröffentlichung: 2006- : New York, NY : Malden, MA : New York Academy of Sciences ; Blackwell ; <i>Original Publication</i>: New York, The Academy., 2024
Medientyp: academicJournal
ISSN: 1749-6632 (electronic)
DOI: 10.1111/nyas.15088
Schlagwort:
  • Humans
  • Temperature
  • Oceans and Seas
  • Climate Change
  • Global Warming
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Ann N Y Acad Sci] 2024 Jan; Vol. 1531 (1), pp. 69-83. <i>Date of Electronic Publication: </i>2023 Dec 05.
  • MeSH Terms: Climate Change* ; Global Warming* ; Humans ; Temperature ; Oceans and Seas
  • References: Estrada, F., & Perron, P. (2014). Detection and attribution of climate change through econometric methods. Boletín De La Sociedad Matemática Mexicana, 20(1), 107-136. https://doi.org/10.1007/s40590-014-0009-7. ; Estrada, F., & Botzen, W. J. W. (2021). Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences, 1504(1), 95-115. https://doi.org/10.1111/nyas.14652. ; Estrada, F., Tol, R. S. J., & Gay-García, C. (2015). The persistence of shocks in GDP and the estimation of the potential economic costs of climate change. Environmental Modelling and Software, 69, 155-165. https://doi.org/10.1016/j.envsoft.2015.03.010. ; Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1786-1793. https://doi.org/10.1073/pnas.0705414105. ; Woodward, W. A., & Gray, H. L. (1993). Global warming and the problem of testing for trend in time series data. Journal of Climate, 6(5), 953-962. https://doi.org/10.1175/1520-0442(1993)006<0953:GWATPO>2.0.CO;2. ; Richards, G. R. (1993). Change in global temperature: A statistical analysis. Journal of Climate, 6(3), 546-559. https://doi.org/10.1175/1520-0442(1993)006<0546:CIGTAS>2.0.CO;2. ; Estrada, F., Perron, P., & Martínez-López, B. (2013). Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience, 6(12), 1050-1055. https://doi.org/10.1038/ngeo1999. ; Estrada, F., Gay, C., & Sánchez, A. (2010). A reply to “Does temperature contain a stochastic trend? Evaluating conflicting statistical results”. Climatic Change, 101, 407-414. https://doi.org/10.1007/s10584-010-9928-0. ; Triacca, U., Attanasio, A., & Pasini, A. (2013). Anthropogenic global warming hypothesis: Testing its robustness by Granger causality analysis. Environmetrics, 24(4), 260-268. https://doi.org/10.1002/env.2210. ; Tol, R. S. J., & de Vos, A. F. (1993). Greenhouse statistics-time series analysis. Theoretical and Applied Climatology, 48(2-3), 63-74. https://doi.org/10.1007/BF00864914. ; Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Jon Dokken, D., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., Allen, S. K., Tignor, M., & Midgley, P. M. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge University Press. ; Ciavarella, A., Stott, P., & Lowe, J. (2017). Early benefits of mitigation in risk of regional climate extremes. Nature Climate Change, 7(5), 326-330. https://doi.org/10.1038/nclimate3259. ; Lehmann, J., Mempel, F., & Coumou, D. (2018). Increased occurrence of record-wet and record-dry months reflect changes in mean rainfall. Geophysical Research Letters, 45(24), 13468-13476. https://doi.org/10.1029/2018GL079439. ; Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A. M. G., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M., Oria Rojas, C., Rusticucci, M., … Kitching, S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098-2118. https://doi.org/10.1002/JGRD.50150. ; Estrada, F., Perron, P., & Yamamoto, Y. (2023). Anthropogenic influence on extremes and risk hotspots. Scientific Reports, 13(1), 35. https://doi.org/10.1038/s41598-022-27220-9. ; Coumou, D., & Luca, P. D. (2020). Global warming makes weather in boreal summer more persistent. EGU-Weather and Climate Dynamics, 30(August), 1-17. https://doi.org/10.5194/wcd-2020-40. ; Kretschmer, M., Coumou, D., Agel, L., BArlow, M., Tziperman, E., & Cohen, J. D. (2018). More-persistent weak stratospheric polar vortex states linked to cold extremes. Bulletin of the American Meteorological Society, 99(1), 49-60. https://doi.org/10.1175/BAMS-D-16-0259.1. ; Pradhan, P., Seydewitz, T., Zhou, B., Lüdeke, M. K. B., & Kropp, J. P. (2022). Climate extremes are becoming more frequent, co-occurring, and persistent in Europe. Anthropocene Science, 1(2), 264-277. https://doi.org/10.1007/s44177-022-00022-4. ; Zhou, T., Zhang, W., Zhang, L., Clark, R., Qian, C., Zhang, Q., Qiu, H., Jiang, J., & Zhang, X. (2022). 2021: A year of unprecedented climate extremes in Eastern Asia, North America, and Europe. Advances in Atmospheric Sciences, 39(10), 1598-1607. https://doi.org/10.1007/s00376-022-2063-9. ; Song, S. Y., Yeh, S. W., Kim, H., & Holbrook, N. J. (2023). Arctic warming contributes to increase in Northeast Pacific marine heatwave days over the past decades. Communications Earth and Environment, 4(1), 1-9. https://doi.org/10.1038/s43247-023-00683-y. ; Laufkötter, C., Zscheischler, J., & Frölicher, T. L. (2020). High-impact marine heatwaves attributable to human-induced global warming. Science, 369(6511), 1621-1625. https://doi.org/10.1126/science.aba0690. ; Tanaka, K. R., & Van Houtan, K. S. (2022). The recent normalization of historical marine heat extremes. PLoS Climate, 1(2), e0000007. https://doi.org/10.1371/journal.pclm.0000007. ; Ren, L., Wang, D., An, N., Ding, S., Yang, K., Yu, R., Freychet, N., Tett, S. F. B., Dong, B., & Lott, F. C. (2020). Anthropogenic influences on the persistent night-time heat wave in summer 2018 over Northeast China. Bulletin of the American Meteorological Society, 101(1), S83-S88. https://doi.org/10.1175/BAMS-D-19-0152.1. ; Simolo, C., & Corti, S. (2022). Quantifying the role of variability in future intensification of heat extremes. Nature Communications, 13(1), 7930. https://doi.org/10.1038/s41467-022-35571-0. ; Pfleiderer, P., & Coumou, D. (2018). Quantification of temperature persistence over the Northern Hemisphere land-area. Climate Dynamics, 51(1-2), 627-637. https://doi.org/10.1007/s00382-017-3945-x. ; Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 1361. https://doi.org/10.2307/1913712. ; Perron, P. (2019). Time series econometrics. Introductory econometrics: A practical approach (1st ed.). World Scientific. https://doi.org/10.1017/cbo9780511814839.012. ; Lenton, T. M., Dakos, V., Bathiany, S., & Scheffer, M. (2017). Observed trends in the magnitude and persistence of monthly temperature variability. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-06382-x. ; Li, Q., Sheng, B., Huang, J., Li, C., Song, Z., Chao, L., Song, Z., Chao, L., Sun, W., Yang, Y., Jiao, B., Guo, Z., Liao, L., Li, X., Sun, C., Li, W., Huang, B., Dong, W., & Jones, P. (2022). Different climate response persistence causes warming trend unevenness at continental scales. Nature Climate Change, 12(4), 343-349. https://doi.org/10.1038/s41558-022-01313-9. ; Pfleiderer, P., Schleussner, C. F., Kornhuber, K., & Coumou, D. (2019). Summer weather becomes more persistent in a 2°C world. Nature Climate Change, 9, 666-671. https://doi.org/10.1038/s41558-019-0555-0. ; Li, J., & Thompson, D. W. J. (2021). Widespread changes in surface temperature persistence under climate change. Nature, 599(7885), 425-430. https://doi.org/10.1038/s41586-021-03943-z. ; Ding, R., & Li, J. (2009). Decadal and seasonal dependence of North Pacific sea surface temperature persistence. Journal of Geophysical Research Atmospheres, 114, D01105. https://doi.org/10.1029/2008JD010723. ; Boulton, C. A., & Lenton, T. M. (2015). Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proceedings of the National Academy of Sciences, 112(37), 11496-11501. https://doi.org/10.1073/pnas.1501781112. ; Perkins-Kirkpatrick, S. E., & Lewis, S. C. (2020). Increasing trends in regional heatwaves. Nature Communications, 11(1), 3357. https://doi.org/10.1038/s41467-020-16970-7. ; Lenton, T. M., Livina, V. N., Dakos, V., Van Nes, E. H., & Scheffer, M. (2012). Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), 1185-1204. https://doi.org/10.1098/rsta.2011.0304. ; Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., & Simpson, I. R. (2021). An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. Journal of Geophysical Research: Atmospheres, 126(3), e2019JD032361. https://doi.org/10.1029/2019JD032361. ; Di Cecco, G. J., & Gouhier, T. C. (2018). Increased spatial and temporal autocorrelation of temperature under climate change. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-33217-0. ; Peixoto, J. P., & Oort, A. H. (1992). Physics of climate. American Institute of Physics. ; Swanson, K. L., Sugihara, G., & Tsonis, A. A. (2009). Long-term natural variability and 20th century climate change. Proceedings of the National Academy of Sciences, 106(38), 16120-16123. https://doi.org/10.1073/pnas.0908699106. ; Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V., & Chen, X. (2011). On the time-varying trend in global-mean surface temperature. Climate Dynamics, 37(3-4), 759-773. https://doi.org/10.1007/s00382-011-1128-8. ; Steinman, B. A., Mann, M. E., & Miller, S. K. (2015). Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347(6225), 988-991. https://doi.org/10.1126/science.1257856. ; Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling controversies about the “global warming hiatus”. Nature, 545(7652), 41-47. https://doi.org/10.1038/nature22315. ; Guan, X., Huang, J., Guo, R., & Lin, P. (2015). The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Scientific Reports, 5(November 2014), 12669. https://doi.org/10.1038/srep12669. ; Halpert, M. S., & Ropelewski, C. F. (1992). Surface temperature patterns associated with the Southern Oscillation. Journal of Climate, 5(6), 577-593. https://doi.org/10.1175/1520-0442(1992)005<0577:stpawt>2.0.co;2. ; Davey, M. K., Brookshaw, A., & Ineson, S. (2014). The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Management, 1, 5-24. https://doi.org/10.1016/j.crm.2013.12.002. ; Zhang, C. (2005). Madden-Julian oscillation. Reviews of Geophysics, 43(2), RG2003. https://doi.org/10.1029/2004RG000158. ; Tank, A. K., Zwiers, F. W., & Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, WCDMP-No. 72. Climate Data and Monitoring. WMO. ; Deng, Q., & Fu, Z. (2019). Comparison of methods for extracting annual cycle with changing amplitude in climate series. Climate Dynamics, 52(7-8), 5059-5070. https://doi.org/10.1007/S00382-018-4432-8/FIGURES/14. ; Qian, C., Fu, C., & Wu, Z. (2011). Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. Journal of Climate, 24(20), 5292-5302. https://doi.org/10.1175/JCLI-D-11-00006.1. ; Kim, D., Oka, T., Estrada, F., & Perron, P. (2020). Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures. Journal of Econometrics, 214(1), 130-152. https://doi.org/10.1016/j.jeconom.2019.05.008. ; Estrada, F., Kim, D., & Perron, P. (2021). Spatial variations in the warming trend and the transition to more severe weather in midlatitudes. Scientific Reports, 11(1), 145. https://doi.org/10.1038/s41598-020-80701-7. ; Estrada, F., & Perron, P. (2019). Causality from long-lived radiative forcings to the climate trend. Annals of the New York Academy of Sciences, 1436(1), 195-205. https://doi.org/10.1111/nyas.13923. ; Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4(1), 1-20. https://doi.org/10.1038/sdata.2017.122. ; Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Wan Ibadullah, W. M., … Bin Hj Yussof, M. N. A. (2020). Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres, 125(16), e2019JD032263. https://doi.org/10.1029/2019JD032263. ; Perkins-Kirkpatrick, S. E., & Gibson, P. B. (2017). Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-12520-2. ; Harvey, A. C. (1990). The econometric analysis of time series (2nd ed.). MIT Press. ; Mills, T. C. (2004). Time series modelling of trends in Northern Hemispheric average temperature series. Energy and Environment, 15(5), 743-753. https://doi.org/10.1260/0958305042886741. ; Kokic, P., Crimp, S., & Howden, M. (2011). Forecasting climate variables using a mixed-effect state-space model. Environmetrics, 22(3), 409-419. https://doi.org/10.1002/env.1074. ; Costa, M., & Monteiro, M. (2019). A periodic mixed linear state-space model to monthly long-term temperature data. Environmetrics, 30(5), e2550. https://doi.org/10.1002/env.2550. ; Estrada, F., & Perron, P. (2017). Extracting and analyzing the warming trend in global and hemispheric temperatures. Journal of Time Series Analysis, 38(5), 711-732. https://doi.org/10.1111/jtsa.12246. ; Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47-78. https://doi.org/10.2307/2998540. ; Bai, J., & Perron, P. (2003). Critical values for multiple structural change tests. Econometrics Journal, 6(1), 72-78. https://doi.org/10.1111/1368-423x.00102. ; Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22. https://doi.org/10.1002/jae.659. ; Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-03732-9. ; Oliver, E. C. J., Burrows, M. T., Donat, M. G., Sen Gupta, A., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen Alistair, A., Hobday, J., Holbrook Pippa, N. J., Moore, J., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2019). Projected marine heatwaves in the 21st century and the potential for ecological impact. Frontiers in Marine Science, 6, 734. https://doi.org/10.3389/fmars.2019.00734. ; Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7718), 360-364. https://doi.org/10.1038/s41586-018-0383-9.
  • Contributed Indexing: Keywords: climate change: trends; extremes; noise; persistence in climate variables
  • Entry Date(s): Date Created: 20231205 Date Completed: 20240119 Latest Revision: 20240119
  • Update Code: 20240119

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -