Zum Hauptinhalt springen

Correlation study between bone metabolic markers, bone mineral density, and sarcopenia.

Xie, WQ ; He, M ; et al.
In: Journal of endocrinological investigation, Jg. 47 (2024-06-01), Heft 6, S. 1559-1572
Online academicJournal

Titel:
Correlation study between bone metabolic markers, bone mineral density, and sarcopenia.
Autor/in / Beteiligte Person: Xie, WQ ; He, M ; Yu, DJ ; Li, HZ ; Jin, HF ; Ji, BZ ; Yang, G ; Chen, LL ; Rahmati, M ; Li, YS
Link:
Zeitschrift: Journal of endocrinological investigation, Jg. 47 (2024-06-01), Heft 6, S. 1559-1572
Veröffentlichung: 2014- : Berlin : Springer ; <i>Original Publication</i>: Milano, Published for the Italian Society of Endocrinology by Editrice Kurtis., 2024
Medientyp: academicJournal
ISSN: 1720-8386 (electronic)
DOI: 10.1007/s40618-023-02252-8
Schlagwort:
  • Humans
  • Female
  • Male
  • Aged
  • Middle Aged
  • Procollagen blood
  • Muscle, Skeletal metabolism
  • Peptide Fragments blood
  • Collagen Type I blood
  • Bone and Bones metabolism
  • Muscle Strength physiology
  • Sarcopenia diagnosis
  • Sarcopenia metabolism
  • Bone Density physiology
  • Biomarkers analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Endocrinol Invest] 2024 Jun; Vol. 47 (6), pp. 1559-1572. <i>Date of Electronic Publication: </i>2023 Dec 14.
  • MeSH Terms: Sarcopenia* / diagnosis ; Sarcopenia* / metabolism ; Bone Density* / physiology ; Biomarkers* / analysis ; Humans ; Female ; Male ; Aged ; Middle Aged ; Procollagen / blood ; Muscle, Skeletal / metabolism ; Peptide Fragments / blood ; Collagen Type I / blood ; Bone and Bones / metabolism ; Muscle Strength / physiology
  • Comments: Erratum in: J Endocrinol Invest. 2024 Feb 19;:. (PMID: 38374491)
  • References: Cruz-Jentoft AJ et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. (PMID: 3031237210.1093/ageing/afy169) ; Cruz-Jentoft AJ et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423. (PMID: 20392703288620110.1093/ageing/afq034) ; Anker SD, Morley JE, von Haehling S (2016) Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 7(5):512–514. (PMID: 27891296511462610.1002/jcsm.12147) ; Chen LK et al (2020) Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21(3):300-307.e2. (PMID: 3203388210.1016/j.jamda.2019.12.012) ; Consensus development conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650. (PMID: 10.1016/0002-9343(93)90218-E) ; Cosman F et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. (PMID: 25182228417657310.1007/s00198-014-2794-2) ; Zanker J, Duque G (2019) Osteoporosis in older persons: old and new players. J Am Geriatr Soc 67(4):831–840. (PMID: 3057074110.1111/jgs.15716) ; Coll PP et al (2021) The prevention of osteoporosis and sarcopenia in older adults. J Am Geriatr Soc 69(5):1388–1398. (PMID: 3362428710.1111/jgs.17043) ; Singh S et al (2022) A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos Int 33(1):1–12. (PMID: 3443211510.1007/s00198-021-06095-y) ; Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381. (PMID: 769683510.1007/BF01622200) ; Moulopoulos LA et al (2018) Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group. Blood Cancer J 8(10):95. (PMID: 30287814617220210.1038/s41408-018-0124-1) ; Baim S, Miller PD (2009) Assessing the clinical utility of serum CTX in postmenopausal osteoporosis and its use in predicting risk of osteonecrosis of the jaw. J Bone Miner Res 24(4):561–574. (PMID: 1925781210.1359/jbmr.090203) ; Eastell R, Hannon RA (2008) Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc 67(2):157–162. (PMID: 1841298910.1017/S002966510800699X) ; Demers LM, Kleerekoper M (1994) Recent advances in biochemical markers of bone turnover. Clin Chem 40(11 Pt 1):1994–1995. (PMID: 795536710.1093/clinchem/40.11.1994) ; Szulc P (2018) Bone turnover: biology and assessment tools. Best Pract Res Clin Endocrinol Metab 32(5):725–738. (PMID: 3044955110.1016/j.beem.2018.05.003) ; Clynes MA et al (2021) Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology (Oxford) 60(2):529–537. (PMID: 3327637310.1093/rheumatology/keaa755) ; Scott D, Ebeling PR (2021) Comment on: Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology (Oxford) 60(6):e216–e217. (PMID: 3350249410.1093/rheumatology/keab066) ; Ontan MS et al (2021) The relationship between osteoporosis and sarcopenia, according to EWGSOP-2 criteria, in outpatient elderly. J Bone Miner Metab 39(4):684–692. (PMID: 3382130310.1007/s00774-021-01213-6) ; Reiss J et al (2019) Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Z Gerontol Geriatr 52(7):688–693. (PMID: 31049683681773810.1007/s00391-019-01553-z) ; Binkley N, Buehring B (2009) Beyond FRAX: it’s time to consider “sarco-osteopenia.” J Clin Densitom 12(4):413–416. (PMID: 1973311010.1016/j.jocd.2009.06.004) ; Reginster JY et al (2016) Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metab Care 19(1):31–36. (PMID: 2641882410.1097/MCO.0000000000000230) ; Chen Z et al (2021) The prevalence of sarcopenia in Chinese older adults: meta-analysis and meta-regression. Nutrients 13(5):1441. (PMID: 33923252814697110.3390/nu13051441) ; Sepúlveda-Loyola W et al (2020) Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 11(5):1164–1176. (PMID: 32862514756714910.1002/jcsm.12600) ; Della Peruta C et al (2023) Sex differences in inflammation and muscle wasting in aging and disease. Int J Mol Sci 24(5):4651. (PMID: 369020811000308310.3390/ijms24054651) ; Rathnayake N et al (2021) Factors associated with measures of sarcopenia in pre and postmenopausal women. BMC Womens Health 21(1):5. (PMID: 33388050777879510.1186/s12905-020-01153-9) ; Kanis JA, Glüer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11(3):192–202. (PMID: 1082423410.1007/s001980050281) ; Kanis JA et al (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475. (PMID: 1818021010.1016/j.bone.2007.11.001) ; Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393(10169):364–376. (PMID: 3069657610.1016/S0140-6736(18)32112-3) ; Zeng Q et al (2019) The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J Bone Miner Res 34(10):1789–1797. (PMID: 3106733910.1002/jbmr.3757) ; Ata AM et al (2021) Reassessing sarcopenia in hypertension: STAR and ACE inhibitors excel. Int J Clin Pract 75(3):e13800. (PMID: 3310869710.1111/ijcp.13800) ; Bai T et al (2020) Sarcopenia is associated with hypertension in older adults: a systematic review and meta-analysis. BMC Geriatr 20(1):279. (PMID: 32762638740968610.1186/s12877-020-01672-y) ; Izzo A et al (2021) A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients 13(1):183. (PMID: 33435310782670910.3390/nu13010183) ; Anagnostis P et al (2020) Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcif Tissue Int 107(5):453–463. (PMID: 3277213810.1007/s00223-020-00742-y) ; Wang T et al (2016) Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep 6:38937. (PMID: 27958337515361610.1038/srep38937) ; Xu J et al (2023) Association between sarcopenia and prediabetes among non-elderly US adults. J Endocrinol Invest 46(9):1815–1824. (PMID: 3685698210.1007/s40618-023-02038-y) ; Huang S, Xiang C, Song Y (2022) Identification of the shared gene signatures and pathways between sarcopenia and type 2 diabetes mellitus. PLoS ONE 17(3):e0265221. (PMID: 35271662891224910.1371/journal.pone.0265221) ; Moretti A et al (2022) Osteosarcopenia and type 2 diabetes mellitus in post-menopausal women: a case-control study. Orthop Rev (Pavia) 14(6):38570. (PMID: 3626722210.52965/001c.38570) ; Qi H et al (2019) Bone mineral density and trabecular bone score in Chinese subjects with sarcopenia. Aging Clin Exp Res 31(11):1549–1556. (PMID: 31317519682503210.1007/s40520-019-01266-8) ; Ning HT et al (2021) Racial and gender differences in the relationship between sarcopenia and bone mineral density among older adults. Osteoporos Int 32(5):841–851. (PMID: 3323170210.1007/s00198-020-05744-y) ; Lima RM et al (2019) Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch Osteoporos 14(1):38. (PMID: 3086833810.1007/s11657-019-0591-4) ; Mera P et al (2016) Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab 5(10):1042–1047. (PMID: 27689017503448510.1016/j.molmet.2016.07.002) ; Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18. (PMID: 28529755543643710.1186/s40364-017-0097-4) ; Drey M et al (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28(5):895–899. (PMID: 2656328710.1007/s40520-015-0494-1) ; Fathi M et al (2021) Association between biomarkers of bone health and osteosarcopenia among Iranian older people: the Bushehr Elderly Health (BEH) program. BMC Geriatr 21(1):654. (PMID: 34798818860356610.1186/s12877-021-02608-w) ; Campodónico I et al (2018) Low bone mineral density in middle-aged women: a red flag for sarcopenia. Menopause 25(3):324–328. (PMID: 2911260010.1097/GME.0000000000000995) ; Bering T et al (2018) Association between pre-sarcopenia, sarcopenia, and bone mineral density in patients with chronic hepatitis C. J Cachexia Sarcopenia Muscle 9(2):255–268. (PMID: 29349902587998010.1002/jcsm.12269) ; Hwang JA et al (2017) Clinical implications of sarcopenia on decreased bone density in men with COPD. Chest 151(5):1018–1027. (PMID: 2801280510.1016/j.chest.2016.12.006) ; Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101. (PMID: 1461330810.1002/ar.a.10119) ; Verschueren S et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24(1):87–98. (PMID: 2277686110.1007/s00198-012-2057-z) ; Saddik H et al (2021) Limb muscular strength and bone mineral density in elderly subjects with low skeletal muscle mass index. J Clin Densitom 24(4):538–547. (PMID: 3395826010.1016/j.jocd.2021.03.011) ; Mastavičiūtė A et al (2021) Associations between physical function, bone density, muscle mass and muscle morphology in older men with sarcopenia: a pilot study. Medicina (Kaunas) 57(2):156. (PMID: 3357210010.3390/medicina57020156) ; Bijlsma AY et al (2013) Diagnostic measures for sarcopenia and bone mineral density. Osteoporos Int 24(10):2681–2691. (PMID: 2364980210.1007/s00198-013-2376-8) ; Phu S et al (2020) The diagnostic value of the short physical performance battery for sarcopenia. BMC Geriatr 20(1):242. (PMID: 32660438735958310.1186/s12877-020-01642-4) ; Guralnik JM et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55(4):M221–M231. (PMID: 1081115210.1093/gerona/55.4.M221) ; Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology (Bethesda) 30(1):8–16. (PMID: 25559151) ; Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25. (PMID: 1175418010.1002/mus.1215) ; Cheng A et al (2013) Sequence of age-associated changes to the mouse neuromuscular junction and the protective effects of voluntary exercise. PLoS ONE 8(7):e67970. (PMID: 23844140370100710.1371/journal.pone.0067970) ; Jang YC, Van Remmen H (2011) Age-associated alterations of the neuromuscular junction. Exp Gerontol 46(2–3):193–198. (PMID: 2085488710.1016/j.exger.2010.08.029) ; Verroken C et al (2018) Bone turnover in young adult men: cross-sectional determinants and associations with prospectively assessed bone loss. J Bone Miner Res 33(2):261–268. (PMID: 2898700210.1002/jbmr.3303) ; Melton LJ 3rd et al (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12(7):1083–1091. (PMID: 920000810.1359/jbmr.1997.12.7.1083) ; Fatayerji D, Eastell R (1999) Age-related changes in bone turnover in men. J Bone Miner Res 14(7):1203–1210. (PMID: 1040402210.1359/jbmr.1999.14.7.1203) ; Szulc P, Delmas PD (2001) Biochemical markers of bone turnover in men. Calcif Tissue Int 69(4):229–234. (PMID: 1173025710.1007/s00223-001-1059-1) ; Zhang Y, Wang Y (2020) Clinical research of the application of bone turnover markers in monitoring the short-term therapeutic efficacy of vitamin d in postmenopausal osteoporotic women in Harbin, China. J Nutr Health Aging 24(5):485–493. (PMID: 3234668610.1007/s12603-020-1362-z) ; Chowdhury S et al (2020) Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Investig 130(6):2888–2902. (PMID: 32078586726000210.1172/JCI133572) ; Mera P et al (2016) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23(6):1078–1092. (PMID: 27304508491062910.1016/j.cmet.2016.05.004) ; Karsenty G, Mera P (2018) Molecular bases of the crosstalk between bone and muscle. Bone 115:43–49. (PMID: 2842807710.1016/j.bone.2017.04.006) ; Shen H et al (2015) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30(4):596–605. (PMID: 2534893810.1002/jbmr.2389) ; Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74. (PMID: 2554958810.1038/nrd4467) ; Rogers MA, Evans WJ (1993) Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 21:65–102. (PMID: 850485010.1249/00003677-199301000-00003) ; Reid KF et al (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114(1):29–39. (PMID: 24122149394518210.1007/s00421-013-2728-2) ; Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5(11):908–923. (PMID: 2868976810.1016/S2213-8587(17)30184-5)
  • Grant Information: 82072506 National Natural Science Foundation of China; 92268115 National Natural Science Foundation of China
  • Contributed Indexing: Keywords: Bone metabolism marker; Bone mineral density; Muscle mass; Muscle strength; Physical performance; Sarcopenia
  • Substance Nomenclature: 0 (Biomarkers) ; 0 (Procollagen) ; 0 (Peptide Fragments) ; 0 (Collagen Type I)
  • Entry Date(s): Date Created: 20231214 Date Completed: 20240531 Latest Revision: 20240531
  • Update Code: 20240601

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -