Zum Hauptinhalt springen

Proteolysis-targeting chimeras with reduced off-targets.

Nguyen, TM ; Sreekanth, V ; et al.
In: Nature chemistry, Jg. 16 (2024-02-01), Heft 2, S. 218-228
academicJournal

Titel:
Proteolysis-targeting chimeras with reduced off-targets.
Autor/in / Beteiligte Person: Nguyen, TM ; Sreekanth, V ; Deb, A ; Kokkonda, P ; Tiwari, PK ; Donovan, KA ; Shoba, V ; Chaudhary, SK ; Mercer, JAM ; Lai, S ; Sadagopan, A ; Jan, M ; Fischer, ES ; Liu, DR ; Ebert, BL ; Choudhary, A
Zeitschrift: Nature chemistry, Jg. 16 (2024-02-01), Heft 2, S. 218-228
Veröffentlichung: London : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 1755-4349 (electronic)
DOI: 10.1038/s41557-023-01379-8
Schlagwort:
  • Proteolysis
  • Thalidomide pharmacology
  • Ubiquitin-Protein Ligases metabolism
  • Proteins metabolism
  • Thalidomide analogs & derivatives
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nat Chem] 2024 Feb; Vol. 16 (2), pp. 218-228. <i>Date of Electronic Publication: </i>2023 Dec 18.
  • MeSH Terms: Ubiquitin-Protein Ligases* / metabolism ; Proteins* / metabolism ; Thalidomide / *analogs & derivatives ; Proteolysis ; Thalidomide / pharmacology
  • References: Chamberlain, P. P. & Cathers, B. E. Cereblon modulators: low molecular weight inducers of protein degradation. Drug Discov. Today Technol. 31, 29–34 (2019). (PMID: 10.1016/j.ddtec.2019.02.00431200856) ; Kozicka, Z. & Thomä, N. H. Haven’t got a glue: protein surface variation for the design of molecular glue degraders. Cell Chem. Biol. 28, 1032–1047 (2021). (PMID: 10.1016/j.chembiol.2021.04.00933930325) ; Finley, D. Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009). (PMID: 10.1146/annurev.biochem.78.081507.101607194897273431160) ; Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). (PMID: 10.1126/science.117731920223979) ; Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014). (PMID: 10.1126/science.124485124292625) ; Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). (PMID: 10.1126/science.124491724292623) ; Chamberlain, P. P. & Hamann, L. G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 15, 937–944 (2019). (PMID: 10.1038/s41589-019-0362-y31527835) ; Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001). (PMID: 10.1073/pnas.1412307981143869037474) ; Winter, G. E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). (PMID: 10.1126/science.aab1433259993704937790) ; Jiang, B. et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew. Chem. 58, 6321–6326 (2019). (PMID: 10.1002/anie.201901336) ; Teng, M. et al. Development of CDK2 and CDK5 Dual Degrader TMX-2172. Angew. Chem. 59, 13865–13870 (2020). (PMID: 10.1002/anie.202004087) ; Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016). (PMID: 10.1038/nature1861127338790) ; Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532, 127–130 (2016). (PMID: 10.1038/nature1697926909574) ; Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015). (PMID: 10.1038/nature14610261319374853910) ; Wang, A. et al. ZFP91 is required for the maintenance of regulatory T cell homeostasis and function. J. Exp. Med. 218, e20201217 (2021). (PMID: 10.1084/jem.2020121733355624) ; Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2017). (PMID: 10.1038/nri.2016.12927990022) ; Cassandri, M. et al. Zinc-finger proteins in health and disease. Cell Death Discov. 3, 17071 (2017). (PMID: 10.1038/cddiscovery.2017.71291523785683310) ; Wang, E. S. et al. Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nat. Chem. Biol. 17, 711–717 (2021). (PMID: 10.1038/s41589-021-00802-w340355228162940) ; Ito, T., Ando, H. & Handa, H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol. Life Sci. 68, 1569–1579 (2011). (PMID: 10.1007/s00018-010-0619-921207098) ; Therapontos, C., Erskine, L., Gardner, E. R., Figg, W. D. & Vargesson, N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc. Natl Acad. Sci. USA 106, 8573–8578 (2009). (PMID: 10.1073/pnas.0901505106194337872688998) ; Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7, e38430 (2018). (PMID: 10.7554/eLife.38430300672236156078) ; Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018). (PMID: 10.1038/s41589-018-0129-x30190590) ; Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021). (PMID: 10.1038/d41573-021-00052-433737725) ; Nguyen, P. A., Born, D. A., Deaton, A. M., Nioi, P. & Ward, L. D. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat. Commun. 10, 1579 (2019). (PMID: 10.1038/s41467-019-09407-3309528586450952) ; Deaton, A. M. et al. Rationalizing secondary pharmacology screening using human genetic and pharmacological evidence. Toxicol. Sci. 167, 593–603 (2019). (PMID: 10.1093/toxsci/kfy26530346593) ; Zhang, A. X. et al. The vital role of proteomics in characterizing novel protein degraders. SLAS Discov. 26, 518–523 (2021). (PMID: 10.1177/247255522098577633615886) ; Beveridge, R. et al. Native mass spectrometry can effectively predict PROTAC efficacy. ACS Cent. Sci. 6, 1223–1230 (2020). (PMID: 10.1021/acscentsci.0c00049327248567379389) ; Grandi, P. & Bantscheff, M. Advanced proteomics approaches to unravel protein homeostasis. Drug Discov. Today Technol. 31, 99–108 (2019). (PMID: 10.1016/j.ddtec.2019.02.00131200865) ; Liu, X. et al. A proteomic platform to identify off-target proteins associated with therapeutic modalities that induce protein degradation or gene silencing. Sci. Rep. 11, 15856 (2021). (PMID: 10.1038/s41598-021-95354-3343492028338952) ; Reinders, J., Lewandrowski, U., Moebius, J., Wagner, Y. & Sickmann, A. Challenges in mass spectrometry-based proteomics. Proteomics 4, 3686–3703 (2004). (PMID: 10.1002/pmic.20040086915540203) ; Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020). (PMID: 10.1016/j.cell.2020.10.0383327590110294644) ; Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018). (PMID: 10.1126/science.aat0572303855466326779) ; Riching, K. M. et al. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem. Biol. 13, 2758–2770 (2018). (PMID: 10.1021/acschembio.8b0069230137962) ; Zhang, C. et al. Proteolysis targeting chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). Eur. J. Med. Chem. 151, 304–314 (2018). (PMID: 10.1016/j.ejmech.2018.03.071296277255924614) ; Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018). (PMID: 10.1038/s41589-018-0021-8295815856295913) ; Sreekanth, V. et al. Chemogenetic system demonstrates that Cas9 longevity impacts genome editing outcomes. ACS Cent. Sci. 6, 2228–2237 (2020). (PMID: 10.1021/acscentsci.0c00129333767847760466) ; ImageJ user guide. (2012) NIH https://imagej.nih.gov/ij/docs/guide/. ; Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020). (PMID: 10.1038/s41592-020-00998-033257825) ; Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020). (PMID: 10.1038/s41592-019-0638-x31768060) ; R Development Core Team (R Foundation for Statistical Computing, 2014). ; Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 10.1093/nar/gkv007256057924402510)
  • Grant Information: F32 GM133088 United States GM NIGMS NIH HHS; R01 GM132825 United States GM NIGMS NIH HHS; R01 GM137606 United States GM NIGMS NIH HHS; R35 GM118062 United States GM NIGMS NIH HHS; R01 EB027793 United States EB NIBIB NIH HHS; R01 CA214608 United States CA NCI NIH HHS; R01 EB031172 United States EB NIBIB NIH HHS; R01 CA218278 United States CA NCI NIH HHS
  • Substance Nomenclature: D2UX06XLB5 (pomalidomide) ; EC 2.3.2.27 (Ubiquitin-Protein Ligases) ; 0 (Proteins) ; 4Z8R6ORS6L (Thalidomide)
  • Entry Date(s): Date Created: 20231218 Date Completed: 20240209 Latest Revision: 20240513
  • Update Code: 20240514
  • PubMed Central ID: PMC10913580

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -